Homework 7

Define your terminology and explain notation. If you require a standard result, such as one of the Sylow theorems, then state it (or cite a result from your textbook) before you use it; otherwise give clear and complete proofs of your claims. The problems are of equal value, 6 points each. Partial solutions will be considered on their merits.

Definition 1.

- A covariant functor $F: \mathscr{A} \rightarrow \mathscr{B}$ is called faithful (resp. full) if, for all $X, Y \in \mathscr{A}$, the map $F: \operatorname{Hom}_{\mathscr{A}}(X, Y) \rightarrow \operatorname{Hom}_{\mathscr{B}}(F(X), F(Y))$ is injective (resp. surjective).
- A contravariant functor $G: \mathscr{A} \rightarrow \mathscr{B}$ is called faithful (resp. full) if, for all $X, Y \in \mathscr{A}$, the $\operatorname{map} G: \operatorname{Hom}_{\mathscr{A}}(X, Y) \rightarrow \operatorname{Hom}_{\mathscr{B}}(G(Y), G(X))$ is injective (resp. surjective).

Exercise 1.

(a) Give an example of a faithful full functor.
(b) Give an example of a non-faithful full functor.
(c) Give an example of a faithful non-full functor.
(d) Give an example of a non-faithful non-full functor.

Exercise 2. Show that the group $\left\langle\alpha, \beta \mid \alpha^{2}=\beta^{2}=1, \alpha \beta \alpha=\beta \alpha \beta\right\rangle$ is finite and identify it with a familiar group.

Exercise 3. Find a presentation for the group of integer matrices of the form $\left(\begin{array}{lll}1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right)$.

Exercise 4.

(a) Show that the ring $\mathbb{Z}[i]$ is principal.
(b) What are the units?

Exercise 5. Consider the ring of formal power series $A=K[[X]]$ with coefficients in a field K.
(a) Describe the group of units A^{*}.
(b) Show that A is a domain.
(c) Describe all ideals in A. Which are prime? Which are maximal?

Exercise 6. Let $\phi: A \rightarrow B$ be a homomorphism of commutative rings.
(a) If \mathfrak{q} is a prime ideal in B then $\phi^{-1}(\mathfrak{q})$ is a prime ideal in A.
(b) Show by example that the analogue of (a) for maximal ideals is false.
(c) If \mathfrak{m} is a maximal ideal in B and ϕ is surjective then $\phi^{-1}(\mathfrak{m})$ is a maximal ideal in A.

Exercise 7. For any set S, denote by $M_{n}(S)$ of $n \times n$-matrices with entries in S. Let A be a ring. Recall that $M_{n}(A)$ is a (possibly non-commutative) ring and that "ideal" means "2-sided ideal" in this case.
(a) Show that, for any ideal \mathfrak{a} of $A, M_{n}(\mathfrak{a})$ is an ideal in $M_{n}(A)$.
(b) Show that any ideal of $M_{n}(A)$ is of the form as in (a).
(c) Show that $M_{n}(A) / M_{n}(\mathfrak{a}) \cong M_{n}(A / \mathfrak{a})$.

Exercise 8. Let \mathfrak{a} be an ideal in a commutative ring A and define the radical of \mathfrak{a} by

$$
\sqrt{\mathfrak{a}}=\left\{x \in A \mid x^{n} \in \mathfrak{a} \text { for some } n \in \mathbb{N}\right\} .
$$

(a) Show that $\mathfrak{a} \subseteq \mathfrak{b}$ implies $\sqrt{\mathfrak{a}} \subseteq \sqrt{\mathfrak{b}}$.
(b) Show that $\sqrt{\sqrt{\mathfrak{a}}}=\sqrt{\mathfrak{a}}$ and $\sqrt{\mathfrak{a}^{n}}=\sqrt{\mathfrak{a}}$ for all $n \in \mathbb{N}$.
(c) Show that $\sqrt{\mathfrak{p}}=\mathfrak{p}$ if \mathfrak{p} is a prime ideal of A.

