Homework 6

Define your terminology and explain notation. If you require a standard result, such as one of the Sylow theorems, then state it (or cite a result from your textbook) before you use it; otherwise give clear and complete proofs of your claims. The problems are of equal value, 6 points each. Partial solutions will be considered on their merits.

Exercise 1. Let $\{G_i\}$ be an inverse system with maps $\{\varphi_j^i\}_{i\geq j}$. Prove that $\varprojlim G_i$ with its natural projections π_i has the following universal property: For all H and $\{\alpha_i\}_{i\in I}$ making the large triangle

commutative for all $i \geq j$, there is a map τ making the left and right small triangles commutative.

Exercise 2.

- (a) Describe the group $\varprojlim (\cdots \hookrightarrow G_{i+1} \hookrightarrow G_i \hookrightarrow G_{i-1} \hookrightarrow \cdots)$ for given subgroups $G_{i+1} \leq G_i \leq G$ of a fixed group G.
- (b) Let \mathscr{H} be a family of subgroups of G as in the definition of a profinite group. Let $\{H_i\}_{i\in\mathbb{N}}\subset\mathscr{H}$ be a cofinal subset, that is, for all $H\in\mathscr{H}$ there is an $i\in\mathbb{N}$ such that $H_i\subseteq H$. Show that $\varprojlim_{i\in\mathbb{N}}(G/H_i)\cong\varprojlim_{H\in\mathscr{H}}G/H$.

Exercise 3. Show that lim is a covariant functor. Outline:

- (a) Describe what is a map of inverse systems.
- (b) Define what is <u>lim</u> applied to such a map.
- (c) Show that \varprojlim commutes with composition of maps.

Exercise 4. Assume that $1 \to \{A_i\} \to \{B_i\} \to \{C_i\} \to 1$ is an exact sequence of inverse systems.

- (a) Show that $1 \to \varprojlim \{A_i\} \to \varprojlim \{B_i\} \to \varprojlim \{C_i\}$ is exact. (So \varprojlim is a left exact functor.)
- (b) Assume that $\{A_i\} = (\{A_i\}, \{f_{i,j}\})$ satisfies the *Mittag-Leffler condition*: For all k there is a $j \geq k$ such that $f_{k,j}(A_j) = f_{k,i}(A_i)$ for all $i \geq j$. Show that $1 \to \varprojlim\{A_i\} \to \varprojlim\{B_i\} \to \varprojlim\{C_i\} \to 1$ is exact.