Homework 5

Define your terminology and explain notation. If you require a standard result, such as one of the Sylow theorems, then state it (or cite a result from your textbook) before you use it; otherwise give clear and complete proofs of your claims. The problems are of equal value, 6 points each. Partial solutions will be considered on their merits.

Exercise 1.

- (a) Show that A_{tor} is finitely generated if A is finitely generated.
- (b) Show that $A_{tor} \leq A$ and that A/A_{tor} is torsion free.

Exercise 2.

- (a) Show that $\operatorname{Hom}(\bigoplus_{i \in \mathbb{N}} \mathbb{Z}, \mathbb{Z}) \cong \prod_{i \in \mathbb{N}} \mathbb{Z}$.
- (b) What is Hom $(\mathbb{Z}, \bigoplus_{i \in \mathbb{N}} \mathbb{Z})$?

Exercise 3. Show that a finite abelian group is not cyclic exactly if it contains a subgroup isomorphic to $Z_p \times Z_p$.

Exercise 4. For finitely generated abelian groups H, K, G show that $G \oplus H \cong G \oplus K$ implies $H \cong K$. Give a counter-example if G is not finitely generated.

Definition 1. Let G be a group.

- A tower of subgroups 1 = G₀ ≤ G₁ ≤ G₂ ≤ ··· ≤ G_n = G is called a *central series* for G if [G, G_{i+1}] ≤ G_i.
- Call *G* nilpotent if it admits a central series.
- Define the upper central series $Z_0(G) \leq Z_1(G) \leq Z_2(G) \leq \cdots \leq G$ of G by $Z_0(G) := 1$ and $Z_{k+1}/Z_k(G) := Z(G/Z_k(G))$ for all $k \geq 0$. (Note that $Z_1(G) = Z(G)$.)
- Define the *lower central series* $G^0 \ge G^1 \ge G^2 \ge \cdots \ge 1$ of G by $G^0 := G$ and $G^{k+1} := [G, G^k]$ for all $k \ge 0$.

Exercise 5.

- (a) Show that G is nilpotent if and only if $Z_k(G) = G$ for large k.
- (b) Show that G is nilpotent if and only if $G^k = 1$ for large k.
- (c) Show that G is solvable if G is nilpotent.

Exercise 6.

- (a) Show that D_n is solvable for all n.
- (b) Show that D_n is nilpotent if and only if $n = 2^k$ for some k.