Homework 12

Define your terminology and explain notation. If you require a standard result, such as one of the Sylow theorems, then state it (or cite a result from your textbook) before you use it; otherwise give clear and complete proofs of your claims. The problems are of equal value, 6 points each. Partial solutions will be considered on their merits.

Exercise 1. Prove the intgeral root test.
Exercise 2. Let K be a field of characteristic zero. Show that the multiplicity of the root $a \in K$ in $f \in K[X]$ equals $\min \left\{k \geq 0 \mid f^{(k)}(a) \neq 0\right\}$ where $f^{(k)}$ is the k th (formal) derivative of f.

Exercise 3. Show that for $f(X) \in K[X] \leq K[X, Y]$ we have $f(X+Y)=\sum_{k=0}^{\infty} \frac{f^{(k)}(X)}{k!} Y^{k}$. Note that the sum is finite.

Exercise 4.

(a) Show that the polynomials $X^{4}+1$ and $X^{6}+X^{3}+1$ are irreducible over \mathbb{Q}.
(b) Show that any degree-3 polynomial over a field is either irreducible, or has a root in the field.

Is $X^{3}-5 X^{2}+1$ irreducible over Q ?
(c) Show that $X^{2}+Y^{2}-1$ is irreducible over \mathbb{Q}. Is it irreducible over \mathbb{C} ?

Exercise 5. Let $f=\sum_{i=0}^{n} a_{i} X^{i} \in \mathbb{Z}[X], a_{n} \neq 0$. Suppose that, for some k with $0<k<n$, $p \nmid a_{n}, p \nmid a_{k}, p^{2} \backslash a_{0}$, but $p \mid a_{i}$ for $i<k$. Then show that f has an irreducible factor of degree at least k.

Exercise 6. Let A be an integral domain. Show that any automorphism of $A[X]$ extending id $_{A}$ is of the form $X \mapsto a X+b$ with $a \in A^{*}$.

Exercise 7. Let K be a field and $K(X)=Q(K[X])$. Show that any automorphism of $K(X)$ extending id_{K} is of the form $X \mapsto \frac{a X+b}{c X+d}$ with $a, b, c, d \in K$ such that $a d-b c \in K^{*}$.

