Homework 11

Define your terminology and explain notation. If you require a standard result, such as one of the Sylow theorems, then state it (or cite a result from your textbook) before you use it; otherwise give clear and complete proofs of your claims. The problems are of equal value, 6 points each. Partial solutions will be considered on their merits.

Exercise 1 (Snake Lemma). Prove exactness in the Snake Lemma at the two middle positions.

Exercise 2 (Graded Modules). Let A be a K-algebra with a *compatible filtration* by K-subspaces A_i , that is, $0 = A_{-1} \le A_0 \le A_1 \le \cdots \le A$ such that $A_i \cdot A_j \subseteq A_{i+j}$. Recall that $\operatorname{gr} A = \bigoplus_{i=0}^{\infty} A_i/A_{i+1}$ is a K-algebra in this case.

- (a) Show that gr M = ⊕_{i=0}[∞] M_i/M_{i+1} is a gr A-module. Let M be an A-module with a *compatible filtration* by K-subspaces M_i, that is, 0 = M₋₁ ≤ M₀ ≤ M₁ ≤ ··· ≤ M such that A_i · M_j ⊆ M_{i+j}.
- (b) Assume that M and N are two modules as in (a), and $\phi: M \to N$ an A-linear map such that $\phi(M_i) \leq N_i$. Define $\operatorname{gr} \phi: \operatorname{gr} M \to \operatorname{gr} N$.
- (c) Show that gr is a covariant functor, and that it is not exact in general. It is exact if the maps are *strict*. Can you guess what the definition of strictness is?

Exercise 3 (Newton Filtration and Kouchnirenko Resolution). Let $A = K[X, Y] = K[\mathbb{N}^2]$. Consider $\mathbb{N}^2 \leq \mathbb{Q}^2$ as a sub-semigroup. Consider the polytope (unit square) $\Delta = [0, 1] \times [0, 1] \leq \mathbb{Q}^2$.

(a) The *Newton filtration* on A with respect to Δ is defined by

$$N_k = \left\langle X^{\alpha} Y^{\beta} \mid (\alpha, \beta) \in \mathbb{N}^2 \cap k \cdot \Delta \right\rangle_K.$$

Show that N_k is a compatible filtration. Write gr A for gr^N A in the following.

- (b) Consider the *facets* σ₁ = {1}×[0,1] and σ₂ = [0,1]×{1} and the *face* σ₀ = σ₁∩σ₂ = {(1,1)} of Δ. These define sub-semigroups S_i = N² ∩ (Q_{≥0} · σ_i) of N², and sub-semigroup rings A_i = K[S_i] of A. Show that the A_i = gr A_i are gr A-modules, where gr A_i is defined using the induced filtration N_k ∩ A_i on A_i. Note that the A_i are not A-modules.
- (c) Show that there is an exact sequence of gr A-modules

$$0 \to A_0 \to A_1 \oplus A_2 \to \operatorname{gr} A \to 0.$$

This exercise illustrates what I said in class: The Newton-graded polynomial ring gr A consists of semigroup rings A_i "patched together". Such rings show up in the context of so called *toric* varieties. A.G. Kouchnirenko used a generalization of (c) to compute Milnor numbers of certain singularities in terms of volumes of polytopes.

Exercise 4 (Weyl Algebra). The (non-commutative) Weyl algebra A_n is defined as the associative K-algebra generated by variables x_1, \ldots, x_n and $\partial_1, \ldots, \partial_n$ subject to the relations $[x_i, x_j] = 0 = [\partial_i, \partial_j]$ and $[\partial_i, x_j] = \delta_{i,j}$ where [a, b] = ab - ba is the commutator.

To understand the philosophy, let $P = K[x_1, \ldots, x_n]$, and consider multiplication by x_i and the partial derivation $\partial_j = \frac{\partial}{\partial x_j}$ as elements of $\operatorname{End}_K(P)$. This turns A_n into a sub-K-algebra of $\operatorname{End}_K(P)$: For instance,

$$\partial_j(x_j(f)) - x_j(\partial_j(f)) = f,$$

for $f \in P$, by the product rule, which explains the commutator relation $[\partial_j, x_j] = 1$.

- (a) Note that a general element of A_n is a finite K-linear combination of finite products involving x_i and ∂_j . For $P \in A_n$, the *order* ord P of P is defined as the maximum number of ∂_j in such a product. Show that ord P is well defined.
- (b) Let F_k be the increasing filtration by order k on A_n . Show that gr A_n is a (commutative) polynomial ring $K[x_1, \ldots, x_n, \xi_1, \ldots, \xi_n]$ where ξ_j is the class of ∂_j in F_1/F_0 .
- (c) The subring $P \leq A_n$ can be identified with A_n modulo the left ideal $\langle \partial_1, \ldots, \partial_n \rangle$ and is therefore a left A_n -module. Consider a left ideal $\mathfrak{a} = \langle P_1, \ldots, P_n \rangle \in A_n$. Show that $\operatorname{Hom}_{A_n}(A_n/\mathfrak{a}, P)$ can be identified with the (K-vector space of) solutions $f \in P$ of the system of linear partial differential equations $P_i(f) = 0, i = 1, \ldots, n$.

What you see in this exercise is the starting point of *D*-module theory, the algebraic theory of linear partial differential equations.