Homework 10

Define your terminology and explain notation. If you require a standard result, such as one of the Sylow theorems, then state it (or cite a result from your textbook) before you use it; otherwise give clear and complete proofs of your claims. The problems are of equal value, 6 points each. Partial solutions will be considered on their merits.

Exercise 1 (Rank of free modules). Let A be a ring.

- (a) Show uniqueness of n in $M \cong A^n$, that is, the rank $\operatorname{rk} M = n$ of M is well-defined. (Hint: Use that the dimension of a vector space is well defined.)
- (b) Show that a finitely generated free A-module M has a finite basis, that is, it is isomorphic to A^n for some n. (Hint: You could use that M is projective and apply another vector space argument.)

Exercise 2 (Zero-divisors and associated primes). Let R be a commutative ring. Assume that R is Noetherian, that is, any increasing chain of ideals is stationary. A prime ideal $\mathfrak{p} \leq R$ is an *associated prime* of R if there is a monomorphism $R/\mathfrak{p} \hookrightarrow R$ of R-modules. For $x \in R$, the *annihilator* Ann(x) of x is the kernel of multiplication by x considered as R-linear map $R \to R$.

(a) Show that any ideal that is maximal among the Ann(x) for some $0 \neq x \in A$ is a prime ideal.

(b) Conclude that the set of zero-divizors equals the union of associated primes.

If you believe that minimal primes are associated, this generalizes what I explained in class: non-zero elements of minimal primes are zero-divisors.

Exercise 3 (The determinant trick). Let M be a finitely generated R-module and let \mathfrak{a} be an ideal in R.

- (a) Show that any $\phi \in \text{End}_R(M)$ with $\phi(M) \leq \mathfrak{a}M$ is *integral* over \mathfrak{a} , that is, $\phi^n + a_1\phi^{n-1} + \cdots + a_{n-1}\phi + a_n = 0$ where $a_i \in \mathfrak{a}^i$ for $i = 1, \ldots, n$. Hint: Represent ϕ by a matrix A and consider $\det(\phi \cdot I A) \in \text{End}_R(M)$ where I is a unit matrix.
- (b) Show that $\mathfrak{a}M = M$ iff (1 a)M = 0 for some $a \in \mathfrak{a}$. Hint: Apply (a) to $\phi = \mathrm{id}_M$.

Exercise 4 (Vasconcelos-Strooker theorem). Let M be a finitely generated module over a commutative ring R. Show that $\phi \in \operatorname{End}_R(M)$ is injective if it is surjective. Hint: Consider M as R[X]module and apply determinant trick to $\mathfrak{a} = \langle X \rangle$. Note also that by exchanging "injective" and "surjective" you break the analogy with the linear algebra case. Can you find a counter-example?

Exercise 5 (Jacobson radical and Nakayama's lemma). The *Jacobson radical* Rad(R) of a commutative ring R is the intersection of all maximal ideals.

- (a) Show that $x \in \text{Rad}(R)$ iff $1 + xy \in R^*$ for all $y \in R$.
- (b) Let $\mathfrak{a} \leq \operatorname{Rad}(R)$ and M a finitely generated R-module. Then $\mathfrak{a}M = M$ implies M = 0. Hint: Use determinant trick.

Exercise 6 (Ideals generated by idempotents). Let \mathfrak{a} be an ideal in a commutative ring R. Assume that \mathfrak{a} is finitely generated, which is automatic if R is Noetherian. Show that $\mathfrak{a} = \mathfrak{a}^2$ iff $\mathfrak{a} = \langle e \rangle$ for some idempotent $e \in \mathfrak{a}$. Hint: Apply the determinant trick to $M = \mathfrak{a}$.