\qquad Last Name: \qquad
OSU Number: \qquad Signature: \qquad

OKLAHOMA STATE UNIVERSITY

Department of Mathematics
MATH 4613/5003 (Modern Algebra I)
Instructor: Dr. Mathias Schulze

MIDTERM 2

October 27, 2010

Duration: 50 minutes
No aids allowed.
This examination paper consists of $\mathbf{5}$ pages and $\mathbf{3}$ questions. Please bring any discrepancy to the attention of an invigilator. The number in brackets at the start of each question is the number of points the question is worth.

Answer 3 questions.
To obtain credit, you must give arguments to support your answers.

For graders' use:

	Score
$1(15)$	
$2(15)$	
$3(15)$	
Total (45)	

1. [15] Formulate definitions (describe the data involved and list the defining properties), give examples or answer questions without proof.
(a) For a subset $A \subset G$ of a group G, define $\langle A\rangle$.
(b) What is a composition series?
(c) Define the alternating group A_{n}.
(d) For $N \unlhd G$, define the group G / N (underlying set and group operation).
(e) What is a simple group?

Solution: See textbook and lecture notes.
2. [15] Formulate results (list all hypotheses and formulate the statement, no proofs), answer questions without proofs.
(a) Sylow's Theorem (about subgroups of groups of order $p^{k} m$ with $(p, m)=1$).
(b) First Isomorphism Theorem.
(c) Second (Diamond) Isomorphism Theorem.
(d) Jordan-Hölder Theorem (about composition series).
(e) Feit-Thompson Theorem (about simple groups of odd order).

Solution: See textbook and lecture notes.
3. [15] Prove statements (give rigorous arguments based on the definitions). Pick 3 out of 5 subproblems.
(a) If $H \leq G$ and $K \leq G$ have coprime orders then $H \cap K=1$.
(b) Let $M \unlhd G$ and $N \unlhd G$ and $G=M N$; show that $G /(M \cap N) \cong(G / M) \times(G / N)$.
(c) Prove that S_{n} is generated by transpositions $(i, i+1), i=1, \ldots, n-1$.
(d) Find all finite groups which have exactly two conjugacy classes.
(e) Prove that every non-Abelian group of order 6 has a non-normal subgroup of order 2, and conclude that every such group is isomorphic to S_{3}.

Solution:

(a) By Lagrange's Theorem, $|H \cap K|||H|$ and $| H \cap K|||K|$. As $| H|$ and $|K|$ are coprime, it follows that $|H \cap K|=1$ and hence $H \cap K=1$.
(b) The kernel of the homomorphism $G \rightarrow G / M \times G / N$ is $M \cap N$. To see that it is surjective, let $(\bar{n}, \bar{m}) \in G / M \times G / N$. By assumption $G=M N$, and $G=N M$ as M is normal. So we can choose $n \in N$ and $m \in M$. As M is normal, $m=m^{\prime n}$ for some $m^{\prime} \in M$, and hence $m n=n m^{\prime}$ is a preimage. Now apply the first isomorphism theorem.
(c) See hint in Exercise 3.5.3.
(d) Pick $h \in G \backslash\{1\}$. Then conjugation $g \mapsto h^{g}$ defines a surjection, and hence a bijection, $G \backslash\{1\} \rightarrow G \backslash\{1\}$. So $C_{G}(h)=\{1, h\}$ and the class equation reads $|G|=1+\left[G: C_{G}(h)\right]=1+\frac{|G|}{2}$. Thus, $|G|=2$ and hence $G \cong Z_{2}$.
(e) As G is not Abelian, $Z(G)=1$ by Exercise 3.1.36 and hence $C_{G}(x)=\langle x\rangle$ for all $1 \neq x \in G$. So the class equation reads $6=|G|=1+2 k+3 l$ where k and l are the numbers of order 3 and 2 elements respectively. It follows that $k=1=l$. Pick $x, y \in G$ with $|x|=3$ and $|y|=2$. Assuming that $H=\langle y\rangle \unlhd G$ gives $y^{x}=y$, for all $x \in G$, and then G Abelian, in contradiction to the assumption. So H is not normal and hence $H \cap H^{x}=1$ for some $x \in G$. Then $G \hookrightarrow S_{G / H} \cong S_{3}$ by Theorem 4.2.3.(3), and hence $G \cong S_{3}$.

