First Name: \qquad Last Name: \qquad
Student ID: \qquad Signature: \qquad

OKLAHOMA STATE UNIVERSITY
Department of Mathematics
MATH 2144 (Calculus I)
Instructor: Dr. Mathias Schulze

MIDTERM 2

October 27, 2010

Duration: 50 minutes
No aids allowed.
This examination paper consists of $\mathbf{7}$ pages and $\mathbf{1 0}$ questions. Please bring any discrepancy to the attention of an invigilator. The number in brackets at the start of each question is the number of points the question is worth.

Answer 8 out of $\mathbf{1 0}$ questions.
Skip (or mark) two problems. Give arguments to support your answers.

For graders' use:

		Score
1	(5)	
2	(5)	
3	(5)	
4	(5)	
5	(5)	
6	(5)	
7	(5)	
8	(5)	
9	(5)	
10	(5)	
Total	(50)	

1. [5] Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ where $f(x)=\frac{x}{3+e^{x}}$.

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{3+e^{x}-x e^{x}}{\left(3+e^{x}\right)^{2}} \\
f^{\prime \prime}(x) & =\frac{-x e^{x}\left(3+e^{x}\right)^{2}-2 e^{x}\left(3+e^{x}\right)\left(3+e^{x}-x e^{x}\right)}{\left(3+e^{x}\right)^{4}} \\
& =\frac{-x e^{x}\left(3+e^{x}\right)-2 e^{x}\left(3+e^{x}-x e^{x}\right)}{\left(3+e^{x}\right)^{3}} \\
& =\frac{x e^{x}-2 e^{x}-3 x-6}{\left(3+e^{x}\right)^{3}} e^{x}
\end{aligned}
$$

2. [5] Differentiate $y=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$.

Solution:

$$
\begin{aligned}
y & =\tanh (x) \\
y^{\prime} & =\operatorname{sech}^{2}(x)
\end{aligned}
$$

3. [5] Find the 1000th derivative of $f(x)=x e^{-x}$.

Solution: Since $\left((x-k) e^{-x}\right)^{\prime}=-(x-(k+1)) e^{-x}$, we have $f^{(k)}=(-1)^{k}(x-k) e^{-x}$, and hence $f^{(1000)}=(x-1000) e^{-x}$.
4. [5] Find y^{\prime} by implicit differentiation: $e^{\frac{x}{y}}=x-y$.

Solution:

$$
\begin{aligned}
& e^{\frac{x}{y}\left(\frac{1}{y}-\frac{x y^{\prime}}{y^{2}}\right)}=1-y^{\prime} \\
&\left(1-\frac{x}{y^{2}} e^{\frac{x}{y}}\right) y^{\prime}=1-\frac{1}{y} e^{\frac{x}{y}} \\
& y^{\prime}=y \frac{y-e^{\frac{x}{y}}}{y^{2}-x e^{\frac{x}{y}}}
\end{aligned}
$$

5. [5] Use implicit differentiation to find the equation of the tangent line to the curve $x^{2}+x y+y^{2}=3$ at the point $(1,1)$.

Solution: Differentiation gives

$$
2 x+y+x y^{\prime}+2 y y^{\prime}=0 .
$$

Setting $m=y^{\prime}(1,1)$ and substituting $(x, y)=(1,1)$, this becomes

$$
2+1+m+2 m=0
$$

So $m=-1$ and the equation of the tangent line at $(1,1)$ reads

$$
y=1+m(x-1)=-x+2 .
$$

6. [5] Differentiate the function $y=\log _{5}\left(x e^{x}\right)$.

Solution:

$$
y^{\prime}=\frac{(x+1) e^{x}}{\ln (5) x e^{x}}=\left(1+\frac{1}{x}\right) \ln \frac{1}{5}
$$

7. [5] Use logarithmic differentiation to differentiate $y=x^{\sin x}$.

Solution: Applying ln gives

$$
\ln y=\sin (x) \ln (x)
$$

Then differentiate to obtain

$$
\frac{y^{\prime}}{y}=\cos (x) \ln (x)+\frac{\sin x}{x}
$$

which yields

$$
y^{\prime}=x^{\sin (x)}\left(\cos (x) \ln (x)+\frac{\sin x}{x}\right) .
$$

8. [5] If a snow ball melts so that its surface area decreases at a rate of $1 \mathrm{~cm}^{2} / \mathrm{min}$, find the rate at which the diameter decreases when the diameter is 10 cm .

Solution: The surface area of the snow ball is

$$
A=4 \pi r^{2}=\pi d^{2}
$$

where $r=r(t)$ and $d=d(t)$ denote the radius and diameter, respectively. So, at the time $t=t_{0}$ when $d\left(t_{0}\right)=10$, we have

$$
-1=A^{\prime}\left(t_{0}\right)=2 \pi d\left(t_{0}\right) d^{\prime}\left(t_{0}\right)=20 \pi d^{\prime}\left(t_{0}\right)
$$

and hence $d^{\prime}\left(t_{0}\right)=-\frac{1}{20 \pi}$.
9. [5] The radius of a circular disc is given as 10 cm with a maximum error in measurement of 0.1 cm . Use differentials to estimate the relative error in the calculated area of the disc.

Solution: From $A=\pi r^{2}$, we compute $d A=2 \pi r d r$, and then the relative error is

$$
\frac{\Delta A}{A} \approx \frac{d A}{A}=2 \frac{d r}{r}=0.02=2 \%
$$

10. [5] Find the absolute maximum and minimum values of the function $f(x)=\frac{x^{2}-4}{x^{2}+4}$, where $-4 \leq x \leq 4$.

Solution: Since

$$
f^{\prime}(x)=\frac{16 x}{\left(x^{2}+4\right)^{2}},
$$

the critical numbers are $-4,0,4$. Therefore,

$$
f(\pm 4)=\frac{3}{5} \text { and } f(0)=-1
$$

are the maximum and minimum values.

End of examination
Total pages: 7
Total marks: 50

