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1. [5] Find f ′(x) and f ′′(x) where f(x) = x
3+ex

.

Solution:

f ′(x) =
3 + ex − xex

(3 + ex)2

f ′′(x) =
−xex(3 + ex)2 − 2ex(3 + ex)(3 + ex − xex)

(3 + ex)4

=
−xex(3 + ex) − 2ex(3 + ex − xex)

(3 + ex)3

=
xex − 2ex − 3x− 6

(3 + ex)3
ex

2. [5] Differentiate y = ex−e−x

ex+e−x .

Solution:

y = tanh(x)

y′ = sech2(x)
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3. [5] Find the 1000th derivative of f(x) = xe−x.

Solution: Since ((x− k)e−x)′ = −(x− (k + 1))e−x, we have f (k) = (−1)k(x− k)e−x,
and hence f (1000) = (x− 1000)e−x.

4. [5] Find y′ by implicit differentiation: e
x
y = x− y.

Solution:

e
x
y

(
1

y
− xy′

y2

)
= 1 − y′(

1 − x

y2
e

x
y

)
y′ = 1 − 1

y
e

x
y

y′ = y
y − e

x
y

y2 − xe
x
y
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5. [5] Use implicit differentiation to find the equation of the tangent line to the curve
x2 + xy + y2 = 3 at the point (1, 1).

Solution: Differentiation gives

2x+ y + xy′ + 2yy′ = 0.

Setting m = y′(1, 1) and substituting (x, y) = (1, 1), this becomes

2 + 1 +m+ 2m = 0.

So m = −1 and the equation of the tangent line at (1, 1) reads

y = 1 +m(x− 1) = −x+ 2.

6. [5] Differentiate the function y = log5(xe
x).

Solution:

y′ =
(x+ 1)ex

ln(5)xex
=

(
1 +

1

x

)
ln

1

5
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7. [5] Use logarithmic differentiation to differentiate y = xsinx.

Solution: Applying ln gives
ln y = sin(x) ln(x).

Then differentiate to obtain

y′

y
= cos(x) ln(x) +

sinx

x

which yields

y′ = xsin(x)
(

cos(x) ln(x) +
sinx

x

)
.

8. [5] If a snow ball melts so that its surface area decreases at a rate of 1 cm2/min, find
the rate at which the diameter decreases when the diameter is 10 cm.

Solution: The surface area of the snow ball is

A = 4πr2 = πd2

where r = r(t) and d = d(t) denote the radius and diameter, respectively. So, at
the time t = t0 when d(t0) = 10, we have

−1 = A′(t0) = 2πd(t0)d
′(t0) = 20πd′(t0)

and hence d′(t0) = − 1
20π

.
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9. [5] The radius of a circular disc is given as 10 cm with a maximum error in measurement
of 0.1 cm. Use differentials to estimate the relative error in the calculated area of the
disc.

Solution: From A = πr2, we compute dA = 2πrdr, and then the relative error is

∆A

A
≈ dA

A
= 2

dr

r
= 0.02 = 2%.

10. [5] Find the absolute maximum and minimum values of the function f(x) = x2−4
x2+4

,
where −4 ≤ x ≤ 4.

Solution: Since

f ′(x) =
16x

(x2 + 4)2
,

the critical numbers are −4, 0, 4. Therefore,

f(±4) =
3

5
and f(0) = −1

are the maximum and minimum values.

End of examination
Total pages: 7
Total marks: 50


