\qquad Last Name: \qquad
OSU Number: \qquad Signature: \qquad

OKLAHOMA STATE UNIVERSITY
Department of Mathematics
MATH 2144 (Calculus I)
Instructor: Dr. Mathias Schulze

MIDTERM 1

September 22, 2010
Duration: 50 minutes
No aids allowed.
This examination paper consists of $\mathbf{6}$ pages and $\mathbf{5}$ questions. Please bring any discrepancy to the attention of an invigilator. The number in brackets at the start of each question is the number of points the question is worth.

Answer 4 (incl. \#1) questions.
To obtain credit, you must give arguments to support your answers.

For graders' use:

	Score
$1(10)$	
$2(10)$	
$3(10)$	
$4(10)$	
$5(10)$	
Total (50)	

1. [10] True or False? Write a "T" (for true) or an "F" (for false) for each statement.
(a) $\lim _{x \rightarrow 4}\left(\frac{2 x}{x-4}-\frac{8}{x-4}\right)=\lim _{x \rightarrow 4} \frac{2 x}{x-4}-\lim _{x \rightarrow 4} \frac{8}{x-4}$
(b) If p is a polynomial, then $\lim _{x \rightarrow 1} p(x)=p(1)$.
(c) If $\lim _{x \rightarrow a}[f(x) g(x)]$ exists, then it must be equal to $f(a) g(a)$.
(d) If $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=-\infty$, then $\lim _{x \rightarrow a}[f(x)+g(x)]=0$.
(e) If $x=1$ is a vertical asymptote of $y=f(x)$ then f is not defined at 1 .
(f) If f is continuous at a, then f is differentiable at a.
(g) If $f(x)>1$ for all $x>0$ and $\lim _{x \rightarrow 0^{+}} f(x)$ exists, then $\lim _{x \rightarrow 0^{+}} f(x)>1$.
(h) If $f^{\prime}(r)$ exists, then $\lim _{x \rightarrow r} f(x)=f(r)$.
(i) The equation $x^{10}-10 x^{2}+5=0$ has a solution in the interval $(0,2)$.
(j) A rational function can have two different horizontal asymptotes.

Solution: (a) F (limit law does not apply to infinite limits)
(b) T (polynomials are continuous)
(c) F (example: $\left.f(x)=x, g(x)=x^{-1}, a=0\right)$
(d) F (example: $\left.f(x)=x^{-2}, g(x)=-x^{-4}, a=0\right)$
(e) F (limits in the definition of the vertical asymptote "ignore" $f(1)$)
(f) F (example: $f(x)=|x|$)
(g) F (example: $f(x)=x+1$)
(h) T (differentiable implies continous)
(i) T (apply Intermediate Value Theorem to $[0,1]$)
(j) F (rational functions have at most one, algebraic functions can have two)
2. [10] Compute the limits.
(a) $\lim _{x \rightarrow \pi} \sin (x+\sin (x+\sin (x+\sin (x+\sin x))))$
(b) $\lim _{x \rightarrow \frac{\pi}{8}} \arctan \left(\frac{64 x^{2}-\pi^{2}}{64 x-8 \pi}\right)$
(c) $\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{6}-x}}{x^{3}+9}$
(d) $\lim _{t \rightarrow \infty} \frac{t^{2}-t}{2 t^{2}+t+7}$
(e) $\lim _{x \rightarrow 0}\left(x^{4} \cos \frac{2}{x}\right)$ (Hint: use the Squeeze Theorem)

Solution:

(a) By continuity, $\lim _{x \rightarrow \pi} \sin (x+\sin (x+\sin (x+\sin (x+\sin x))))=\sin (\pi+\sin (\pi+$ $\sin (\pi+\sin (\pi+\sin \pi))))=0$.
(b) By Theorem 8 in Section 2.5, $\lim _{x \rightarrow \frac{\pi}{8}} \arctan \left(\frac{64 x^{2}-\pi^{2}}{64 x-8 \pi}\right)=\arctan \left(\lim _{x \rightarrow \frac{\pi}{8}} \frac{64 x^{2}-\pi^{2}}{64 x-8 \pi}\right)$. But $\lim _{x \rightarrow \frac{\pi}{8}} \frac{64 x^{2}-\pi^{2}}{64 x-8 \pi}=\lim _{x \rightarrow \frac{\pi}{8}}\left(x+\frac{\pi}{8}\right)=\frac{\pi}{4}$ and hence the result is $\arctan \frac{\pi}{4}=1$.
(c) Note that for $x<0$, we have $x^{-3}=-\sqrt{x^{-6}}$. Using this, we compute $\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{6}-x}}{x^{3}+9}=\lim _{x \rightarrow-\infty}-\frac{\sqrt{4 x^{6}-x} \sqrt{x^{-6}}}{\left(x^{3}+9\right) x^{-3}}=\lim _{x \rightarrow-\infty}-\frac{\sqrt{4-\frac{1}{x^{5}}}}{1+\frac{9}{x^{3}}}=-2$.
(d) $\lim _{t \rightarrow \infty} \frac{t^{2}-t}{2 t^{2}+t+7}=\lim _{t \rightarrow \infty} \frac{t^{2}}{2 t^{2}}=\frac{1}{2}$
(e) We have $-x^{4} \leq x^{4} \cos \frac{2}{x} \leq x^{4}$ and $\lim _{x \rightarrow 0} x^{4}=0$. So, by the Squeeze Theorem, it follows that also $\lim _{x \rightarrow 0}\left(x^{4} \cos \frac{2}{x}\right)=0$.
3. [10]
(a) For $f(x)=\frac{2 x^{2}-18}{x^{2}+2 x-3}$, find all asymptotes and the limits that describe the asymptotic behavior of the function.
(b) Find the horizontal asymptotes of the function $f(x)=\frac{\sqrt{x^{6}-1}}{x^{3}+7 x^{2}+4 x-8}$.

Solution: (a) Dropping the terms with not highest exponents in the numerator and denominator of f (as explained in the lecture) yields $y=\frac{2 x^{2}}{x^{2}}=2$ as horizontal asymptote for both $x \rightarrow \infty$ and $x \rightarrow-\infty$. So we have $\lim _{x \rightarrow \pm \infty} f(x)=2$. To find the vertical asymptotes, we factorize and cancel factors if possibe:

$$
f(x)=\frac{2 x^{2}-18}{x^{2}+2 x-3}=2 \frac{(x+3)(x-3)}{(x+3)(x-1)}=2 \frac{x-3}{x-1}
$$

So, $x=1$ is the only vertical asymptote. As $x-3<0$ for x close to 1 , we have $\lim _{x \rightarrow 1^{-}}=\infty$ and $\lim _{x \rightarrow 1^{+}}=-\infty$.
(b) Dropping the terms with not highest exponents under the root and in the denominator of f (as above) yields $\frac{\sqrt{x^{6}}}{x^{3}}=\frac{|x|^{3}}{x^{3}}=|x| / x$ which has the same asymptotic behavior as $f(x)$ for large $|x|$. So $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty}|x| / x=1$ and similarly $\lim _{x \rightarrow-\infty} f(x)=-1$. In other words, $y=1$ and $y=-1$ are two (different) horizontal asymptotes.
4. [10]
(a) Find all values for a and b such that the function

$$
f(x)= \begin{cases}\frac{x^{2}-9}{x-3} & \text { if } x<1 \\ (x-a)^{2} & \text { if } 1 \leq x<2 \\ 2 a x-b & \text { if } 2 \leq x\end{cases}
$$

becomes continuous.
(b) Is f differentiable for some choice of a and b ?

Solution:

(a) First, note that $f(x)=x+3$ for $x<1$. Continuity is clear at $x \neq 1,2$, as polynomials are continuous. The following two conditions are equivalent to continuity at 1 and 2 respectively:

$$
\begin{gathered}
4=\lim _{x \rightarrow 1^{-}} f(x)=f(1)=(1-a)^{2}, \\
(2-a)^{2}=\lim _{x \rightarrow 2^{-}} f(x)=f(2)=4 a-b .
\end{gathered}
$$

The first equality gives $a=1 \mp 2$, so $a=-1$ or $a=3$. Then the second equality reads $5 \pm 4=(1 \pm 2)^{2}=4 \mp 8-b$ which gives $b=-1 \mp 12$. So either $a=-1$ and $b=-13$ or $a=3$ and $b=11$.
(b) Note that if f is continuous, then $f(1)=4$ by the first part. For $f^{\prime}(1)=$ $\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$ to exist, the corresponding left- and right-sided limits

$$
\begin{gathered}
\lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0^{-}} \frac{1+h+3-4}{h}=1, \\
\lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0^{+}} \frac{(1+h-a)^{2}-4}{h}
\end{gathered}
$$

must be equal. But, for $a=1 \mp 2$, the right-sided limit equals

$$
\lim _{h \rightarrow 0^{+}} \frac{(h \pm 2)^{2}-4}{h}=\lim _{h \rightarrow 0^{+}} \frac{h^{2} \pm 4 h}{h}= \pm 4
$$

which is not equal to the left-sided limit. So the answer is "no".
5. [10]
(a) Compute the derivative of $f(x)=\frac{1-x}{1+x}$ (using the limit definition).
(b) Find the equation of the tangent line to the graph of f at the point $(1,0)$.

Solution:

(a)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1-x-h}{1+x+h}-\frac{1-x}{1+x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(1-x-h)(1+x)-(1-x)(1+x+h)}{h(1+x+h)(1+x)} \\
& =\lim _{h \rightarrow 0} \frac{1-x-h+x-x^{2}-h x-1-x-h+x+x^{2}+h x}{h(1+x+h)(1+x)} \\
& =\lim _{h \rightarrow 0} \frac{-2 h \quad}{h(1+x+h)(1+x)}=-\frac{2}{(1+x)^{2}}
\end{aligned}
$$

(b) The slope is $m=f^{\prime}(0)=-\frac{1}{2}$, so the equation reads $y=m(x-1)=\frac{1}{2}-\frac{1}{2} x$.

