\qquad Last Name: \qquad
OSU Number: \qquad Signature: \qquad

OKLAHOMA STATE UNIVERSITY
 Department of Mathematics

MATH 4143/5043 (Advanced Calculus)
Instructor: Dr. Mathias Schulze

MIDTERM 2

October 30, 2009
Duration: 50 minutes
No aids allowed.
This examination paper consists of $\mathbf{3}$ pages and $\mathbf{3}$ questions. Please bring any discrepancy to the attention of an invigilator. The number in brackets at the start of each question is the number of points the question is worth.

Answer 3 questions.
To obtain credit, you must give arguments to support your answers.

For graders' use:

	Score
$1(12)$	
$2(12)$	
$3(12)$	
Total (36)	

1. [12] Formulate definitions (describe the data involved and list the defining properties). Pick 3 out of 5 subproblems.
(a) What is a critical point?
(b) Define the directional drivative and the total derivative of a function.
(c) What is a function of class C^{k} ?
(d) Define the Hessian matrix.
(e) What is an antiderivative?

Solution: See textbook and lecture notes.
2. [12] Formulate theorems (list all hypotheses and formulate the statement). Pick 3 out of 5 subproblems.
(a) Mean Value Theorem (differential or integral version, 1 variable)
(b) Local Approximation Theorem (n variables)
(c) Chain Rule (n variables)
(d) Taylor's Formula (n variables)
(e) 2nd Derivative Test (n variables)

Solution: See textbook and lecture notes.
3. [12] Prove statements (give rigorous arguments based on the definitions). Pick 3 out of 5 subproblems.
(a) If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and $\int_{a}^{x} f=\int_{x}^{b} f$ for all $x \in(a, b)$, then $f=0$.
(b) If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, $F(x)=\int_{a}^{x} f(t) d t$ is an antiderivative for f on (a, b).
(c) Integral Cauchy-Schwarz Inequality: For $f, g:[a, b] \rightarrow \mathbb{R}$ continuous,

$$
\left(\int_{a}^{b} f g\right)^{2} \leq\left(\int_{a}^{b} f^{2}\right) \cdot\left(\int_{a}^{b} g^{2}\right)
$$

(d) The subset of points in $[a, b] \times[c, d]$ with coordinates in \mathbb{Q} does not have an area.
(e) The integral of a bounded function over a finite domain is zero.

Solution:

(a) Let F be an antiderivative of f on (a, b). Then, by the fundamental theorem of calculus, the given equality becomes $2 F(x)=F(b)-F(a)$. This shows that F is constant and hence $f=F^{\prime}=0$ on (a, b), and hence also on $[a, b]$ by continuity of f.
(b) See proof of Theorem 3.4.5. ${ }^{1}$
(c) By monotony and linearity of the integral we have

$$
0 \leq \int_{a}^{b}(f+\lambda g)^{2}=\int_{a}^{b} f^{2}+2 \lambda \int_{a}^{b} f g+\lambda^{2} \int_{a}^{b} g^{2}
$$

This means that the right hand side polynomial of λ has no two different real zeros (in which case it would have negative values). Then the discriminant $\Delta=$ $\left(\int_{a}^{b} f g\right)^{2}-\int_{a}^{b} f^{2} \int_{a}^{b} g^{2}$ must be ≤ 0 and the claim follows.
(d) Let Q the set of points in $R=[a, b] \times[c, d]$ with coordinates in \mathbb{Q}, and let N be any grid on R. Recall that $\grave{Q}=\emptyset$ and $\bar{Q}=R$. So $\underline{S}_{N}(Q)=0$ and $\bar{S}_{N}(Q)=A(R)$, for all grids N on R, by definition of these Riemannian sums. It follows that $\underline{A}(Q)=0<A(R)=\bar{A}(Q)$ and hence Q has no area.
(e) Consider $f: D \rightarrow \mathbb{R}$ with $D \subset \mathbb{R}^{n}$ finite, and pick a rectangle R containing D. Consider

$$
F= \begin{cases}f(x), & x \in D \\ 0, & x \in R \backslash D\end{cases}
$$

Then by definition, $\int_{D} f=\int_{R} F$. But if $\# D=k$ then, for any grid N on R, both $\bar{S}_{N}(F)$ and $\underline{S}_{N}(F)$ involve at most k summands. Setting $M=\max |f(D)|^{2}$ and $\delta=\delta(N)$, this shows that

$$
-4 k M \delta^{2} \leq \underline{S}_{N}(F) \leq \bar{S}_{N}(F) \leq 4 k M \delta^{2}
$$

It follows that $\int_{R} F$ exists and equals zero.

End of examination
 Total pages: 3
 Total marks: 36

[^0]
[^0]: ${ }^{1}$ I noticed here that there is a problem in the textbook: Having an antiderivative makes sense only in an open interval, because this is where derivatives in general have been defined. So the statement of Theorem 3.4.5 should be reformulated as " f has an antiderivative on (a, b) ". However Theorem 3.4.7 remains true, but the proof requires more work.
 ${ }^{2}$ Note that we do not need the assumtion that f is bounded. This is automatic by finiteness of D. I was hoping that you notice that.

