\qquad Last Name: \qquad
OSU Number: \qquad Signature: \qquad

OKLAHOMA STATE UNIVERSITY
 Department of Mathematics

MATH 4143/5043 (Advanced Calculus)
Instructor: Dr. Mathias Schulze

MIDTERM 1

September 21, 2009
Duration: 50 minutes
No aids allowed.
This examination paper consists of $\mathbf{3}$ pages and $\mathbf{3}$ questions. Please bring any discrepancy to the attention of an invigilator. The number in brackets at the start of each question is the number of points the question is worth.

Answer 3 questions.
To obtain credit, you must give arguments to support your answers.

For graders' use:

	Score
$1(12)$	
$2(12)$	
$3(15)$	
Total (39)	

1. [12] Formulate definitions (describe the data involved and list the defining properties).

Pick 4 out of 5 questions.
(a) What is a topological space?
(b) What is a cluster point of a subset of real n-space?
(c) What is a Cauchy sequence?
(d) What is a connected topological space?
(e) What is a continuous function? What is a uniformly continuous function?

Solution:

(a) A set X together with a set \mathcal{U} of subsets of X is called a topological space if
(i) $X, \emptyset \in \mathcal{U}$,
(ii) $\bigcap_{V \in \mathcal{V}} V \in \mathcal{U}$ for any finite subset $\mathcal{V} \subset \mathcal{U}$, and
(iii) $\bigcup_{V \in \mathcal{V}} V \in \mathcal{U}$ for any subset $\mathcal{V} \subset \mathcal{U}$.
(b) For a general topological space $X, p \in X$ is a cluster point of a subset $S \subset X$ if any open neighborhood U of p meets $S \backslash\{p\}$, i.e. $U \cap(S \backslash\{p\}) \neq \emptyset$. For $X=\mathbb{R}^{n}$, the open neighborhoods of p can be replaced by $B(p, \epsilon)$ for all $\epsilon>0$.
(c) A sequence $\left\{p_{n}\right\} \subset \mathbb{R}^{n}$ is called a Cauchy sequence if $\forall \epsilon>0: \exists N \in \mathbb{N}: \forall m, n \geq$ $N:\left|p_{n}-p_{m}\right|<\epsilon$.
(d) A topological space is connected if it is not the disjoint union of two nonempty open sets.
(e) A function $f: X \rightarrow Y$ between topological spaces is continuous if the preimage under f of any open set in Y is open in X. A function $f: D \rightarrow \mathbb{R}$, $U \subset \mathbb{R}^{n}$, is uniformly continuous if $\forall \epsilon>0: \exists \delta>0: \forall p, q \in D:|p-q|<\delta \Rightarrow$ $|f(p)-f(q)|<\epsilon$.
2. [12] Formulate theorems (list all hypotheses and formulate the statement). Pick 4 out of 5 questions.
(a) What does the Cauchy-Schwarz inequality say?
(b) What does the Bolzano-Weiherstraß Theorem say?
(c) What does the Heine-Borel Theorem say?
(d) What does the Nested Interval Theorem say?
(e) What is the main result on Cauchy sequences in real n-space?

Solution:

(a) For any $p, q \in \mathbb{R}^{n},|p \bullet q| \leq|p| \cdot|q|$.
(b) Every bounded sequence in \mathbb{R}^{n} has a convergent subsequence.
(c) A subset of \mathbb{R}^{n} is compact if it is closed and bounded.
(d) The intersection of any nested sequence $I_{1} \supset I_{2} \supset I_{3} \supset \cdots$ of closed bounded intervals $I_{n} \subset \mathbb{R}$ is non-empty, i.e. $\bigcap_{n \in \mathbb{N}} I_{n} \neq \emptyset$.
(e) Any Cauchy sequence in real n-space is convergent.
3. [15] Prove statements (give rigorous arguments based on the definitions). Pick 3 out of 4 statements.
(a) The sequence $p_{n}=\left(\frac{n+1}{n},(-1)^{n}\right)$ has exactly two limit points.
(b) The function $M(x, y)=x y$ is continuous.
(c) Any convergent sequence is a Cauchy sequence.
(d) Any compact subset of real n-space is bounded.

Solution:

(a) For a given $\epsilon>0$, we choose $N \in \mathbb{N}$ such that $N \geq 1 / \epsilon$; then for all $n \geq N$ we have $\left|\frac{n+1}{n}-1\right|=1 / n \leq 1 / N \leq \epsilon$. Writing $p_{n}=\left(x_{n}, y_{n}\right)$, this shows that $x_{n} \rightarrow 1$, and hence, by Theorem 1.6.7, that $p_{2 n} \rightarrow(1,1)$ and $p_{2 n+1} \rightarrow(1,-1)$. So $p_{ \pm}=(1, \pm 1)$ are two limit points of $\left\{p_{n}\right\}$. For any other point $p \neq p_{ \pm}$, set $\epsilon=\min \left\{2,\left|p-p_{+}\right|,\left|p-p_{-}\right|\right\} / 2$; then the ϵ-balls centered at p, p_{+}, and p_{-}do not meet. As $B\left(p_{+}, \epsilon\right) \cup B\left(p_{-}, \epsilon\right)$ contain all but finitely many p_{n}, p can not be a limit point of $\left\{p_{n}\right\}$.
(b) For $\epsilon>0$ and $p=(a, b)$, set $\delta=\min \left\{|a|+|b|, \frac{\epsilon}{2(|a|+|b|)}\right\}$ if $p \neq 0$, and $\delta=\sqrt{\epsilon}$ otherwise. Then, for any $q=(x, y)$ with $|p-q|<\delta$, we have $|y|-|b| \leq$ $|b-y|<\delta$, and hence $|M(p)-M(q)|=|a b-x y|=|a(b-y)+y(a-y)| \leq$ $|a||b-y|+|y||a-x| \leq(|a|+|y|)|p-q| \leq(|a|+|b|+\delta)|p-q|<\epsilon$.
(c) Let $p_{n} \rightarrow p$, and $\epsilon>0$ arbitrary. Then, by convergence, there exists an $N \in \mathbb{N}$ such that, for all $n \geq N$, we have $\left|p_{n}-p\right| \leq \epsilon / 2$. For $n, m \geq N$, we conclude that $\left|p_{n}-p_{m}\right| \leq\left|p_{n}-p\right|+\left|p-p_{m}\right|<\epsilon / 2+\epsilon / 2=\epsilon$.
(d) By compactness of S, the open covering $\bigcup_{n \in \mathbb{N}} B(0, n) \cap S$ of S has a finite subcovering $\bigcup_{n=1}^{N} B(0, n) \cap S$ and hence $S \subset B(0, N)$ and S is bounded.

End of examination

Total pages: 3

Total marks: 39

