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1. [24]

(a) Write down a formula for the average value fav of a function f(x, y, z) on a region
D.

(b) Write down a formula for the mass m of a solid S with density ρ(x, y, z).

(c) Write down a formula for the x-coordinate x̄ of the center of mass of a solid S
with density ρ(x, y, z).

(d) Write down a formula for the moment of inertia Ix about the x-axis of a lamina
with density ρ(x, y) that occupies the region D.

(e) Write down the formulæ to transform cylindrical coordinates r, θ, z into cartesian
coordinates x, y, z.

(f) What is dV = dx dy dz in terms of cylindrical coordinates?

(g) Write down the formulæ to transform spherical coordinates ρ, θ, φ into cartesian
coordinates x, y, z.

(h) What is dV = dx dy dz in terms of spherical coordinates?

Solution: See textbook.
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2. [8] Evaluate the triple integral
∫∫∫

E
z dV , where E is the region bounded by x = 0,

y = 0, z = 0, and x+ y + z = 1.

Solution: This is a simplified version of Problem 15.6.12; its solution has been ex-
plained in the review session.

The region E is defined by the inequalities x ≥ 0, y ≥ 0, z ≥ 0, and x+y+z ≤ 1.
So the lower bound for all three variables is 0. The upper bound for z is 1 (attained
when x = 0 = y). For fixed z, the upper bound for y is 1 − z (attained when
x = 0). For fixed y and z, the upper bound for x is 1− y − z. Therefore∫∫∫

E

z dV =

∫ 1

0

∫ 1−z

0

∫ 1−y−z

0

z dx dy dz

=

∫ 1

0

z

∫ 1−z

0

1− y − z dy dz

=

∫ 1

0

z
[
y − y2/2− yz

]1−z
0

dz

=

∫ 1

0

z(1− z − 1/2 + z − z2/2− z + z2) dz

=

∫ 1

0

z/2− z2 + z3/2 dz

= [z2/4− z3/3 + z4/8]10
= 1/24.
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3. [8] Use cylindrical coordinates to evaluate the integral
∫∫∫

E
ez dV , where E is inclosed

by the paraboloid z = 1 + x2 + y2, the cylinder x2 + y2 = 5, and the x-y-plane.

Solution: This is Problem 15.7.19; its solution has been explained in the review
session.

In cylindrical coordinates, the solid is defined by 0 ≤ z ≤ 1 + r2 (since z = 0
defines the x-y-plane), and r =

√
5 (since r is always positive). Note that there

are no conditions on θ, so 0 ≤ θ ≤ 2π. Thus,∫∫∫
E

ez dV =

∫ 2π

0

∫ √5

0

∫ 1+r2

0

ezr dz dr dθ

= π

∫ √5

0

2re1+r2 − 2r dr

= π
[
e1+r2 − r2

]√5

0

= π(e6 − e− 5).



page 5

4. [8] Use spherical coordinates to evaluate the integral
∫∫∫

H
x2 + y2 dV where H is the

solid hemisphere x2 + y2 + z2 ≤ 9, z ≥ 0.

Solution: This is a simplified version of Problem 15.8.22; its solution has been ex-
plained in the review session.

The hemisphere H is defined by the inequalities ρ ≤ 3 and φ ≤ π/2, with no
conditions on θ. Note also that x2 + y2 = ρ2 sin2 φ in spherical coordinates.
Therefore∫∫∫

H

x2 + y2 dV =

∫ 2π

0

∫ π/2

0

∫ 3

0

ρ2 sin2 φ · ρ2 sinφ dρ dφ dθ

= 2π

∫ 3

0

ρ4 dρ

∫ π/2

0

sin3 φ dφ

= 2π
35

5

∫ π/2

0

(1− cos2 φ) sinφ dφ

= 2π
35

5

[
− cosφ+

1

3
cos3 φ

]π/2
0

π
35

5
(1− 1/3) =

4π34

5
.
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5. [8] Use the transformation x = 2u+v, y = u+2v, to evaluate the integral
∫∫

R
x−3y dA,

where R is the triangular region with vertices (0, 0), (2, 1), (1, 2).

Solution: This is Problem 15.9.11; its solution has been explained in the review
session.

Solving for u and v, we compute the inverse transformation: u = 2x−y
3

, v = 2y−x
3

.
As the transformation is linear, the image of R is the triangle S with vertices (0, 0),
(1, 0), (0, 1), obtained by applying the inverse transformation to the vertices of
R. Transforming the function gives x − 3y = 2u + v − 3u − 6v = −u − 5v. The
Jacobian of the transformation is the determinant

∂(x, y)

∂(u, v)
= det

(
2 1
1 2

)
= 3.

Finally, we can compute∫∫
R

x− 3y dA = −3

∫∫
S

u+ 5v du dv

= −3

∫ 1

0

∫ 1−v

0

u+ 5v du dv

= −3

∫ 1

0

[
1

2
u2 + 5vu

]1−v

0

dv

= −3

∫ 1

0

1

2
+ 4v − 9

2
v2 dv

= −3

(
1

2
+ 2− 3

2

)
= −3.
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