\qquad Last Name: \qquad
OSU Number: \qquad Signature: \qquad

OKLAHOMA STATE UNIVERSITY
Department of Mathematics
MATH 2163 (Calculus III)
Instructor: Dr. Mathias Schulze

MIDTERM 2

October 23, 2009

Duration: 50 minutes
No aids allowed.
This examination paper consists of 4 pages and 5 questions. Please bring any discrepancy to the attention of an invigilator. The number in brackets at the start of each question is the number of points the question is worth.

Answer 5 questions.
To obtain credit, you must give arguments to support your answers.

For graders' use:

		Score
1	(9)	
2	(9)	
3	(6)	
4	(6)	
5	(9)	
Total (39)		

1. [9] Consider the function $f(p, q)=q e^{-p}+p e^{-q}$ at the point $P(0,0)$.
(a) Find the maximum rate of change of f at P and the direction in which it occurs.
(b) Find the directional derivative of f at P in direction of the x -axis.
(c) Find the equation of the tangent and normal lines to the curve $f(p, q)=0$ at P.

Solution:

(a) Since $\nabla f(0,0)=\left\langle-q e^{-p}+e^{-q}, e^{-p}-p e^{-q}\right\rangle(0,0)=\langle 1,1\rangle$, the maximum rate of change is $\sqrt{2}$ and occurs in direction 45°.
(b) $D_{(1,0)} f(0,0)=\langle 1,1\rangle \bullet\langle 1,0\rangle=1$
(c) The tangent line is given by $x+y=0$, the normal line by $x-y=0$.
2. [9] Give an example of a function with the given property.
(a) a local maximum at $(1,1)$
(b) a saddle point at $(1,1)$
(c) a local minimum at $(0,0)$ that can not be detected using the 2 nd derivative test.

Solution:

(a) $f(x, y)=-(x-1)^{2}-(y-1)^{2}$ (or even $f(x, y)=0$ works)
(b) $f(x, y)=(x-1)^{2}-(y-1)^{2}$
(c) $f(x, y)=x^{2}+y^{4}$ (or even $f(x, y)=0$ works)
3. [6] Consider the function $f(x, y)=x y+\frac{1}{x}+\frac{1}{y}$.
(a) Find all critical points and determine whether they are local maxima, local minimal, or saddle points.
(b) Are there any global maxima or minima? Explain why.

Solution:

(a) Setting $\nabla f=\left\langle y-1 / x^{2}, x-1 / y^{2}\right\rangle=0$ gives $x=y=1$. The Hessian at this point is $\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$, so it is a local minimum by the 2 nd derivative test.
(b) Since $\lim _{x \rightarrow 0_{ \pm}} f(x, 1)= \pm \infty$, there is no global maximum or minimum.
4. [6] Find the maximum and minimum values of the function $f(x, y)=2 x^{2}+3 y^{2}-4 x-5$ subject to the constraint $x^{2}+y^{2} \leq 16$.

Solution: To find critcal points (x, y) with $x^{2}+y^{2}<16$, set $\nabla f=\langle 4 x-4,6 y\rangle=0$. This gives $x=1$ and $y=0$, and $f(1,0)=-7$. To find critcal points with $g=x^{2}+y^{2}-16=0$, apply Lagrange multipliers: Using $\nabla g=\langle 2 x, 2 y\rangle$, the system of equations $\nabla f=\lambda \nabla g, g=0$, becomes: $2 x-2=\lambda x, 3 y=\lambda y, x^{2}+y^{2}=16$. Rewrite the first two equations as $(2-\lambda) x=2,(3-\lambda) y=0$. If $y=0$ then $x= \pm 4$, and the corresponding values of f are 11 and 43. Otherwise, $\lambda=3$, $x=-2, y= \pm 2 \sqrt{3}$, and the value of f is 47 . Thus, f has minimum value -7 at $(1,0)$, and maximum value 47 at $(-2, \pm 2 \sqrt{3})$.
5. [9]
(a) Evaluate the integral by changing the order of integration: $\int_{0}^{1} \int_{x}^{1} e^{x / y} d y d x$.
(b) Compute the average of $f(x, y)=x y$ over the triangle Δ with vertices $(0,0)$, $(1,0),(1,1)$.
(c) Compute the volume V under the surface $z=2 x+y^{2}$, and above the region bounded by $x=y^{2}, x=y^{3}$.

Solution:

(a) $\int_{0}^{1} \int_{x}^{1} e^{x / y} d y d x=\iint_{\{(x, y) \mid 0 \leq x \leq 1, x \leq y \leq 1\}} e^{x / y} d A=\iint_{\{(x, y) \mid 0 \leq y \leq 1,0 \leq x \leq y\}} e^{x / y} d A=$ $\int_{0}^{1} \int_{0}^{y} e^{x / y} d x d y=\int_{0}^{1}\left[y e^{x / y}\right]_{x=0}^{y} d y=(e-1) \int_{0}^{1} y d y=\frac{1}{2}(e-1)$.
(b) $f_{\text {av }}=\frac{1}{A(\Delta)} \iint_{\Delta} x y d A=2 \int_{0}^{1} \int_{0}^{x} x y d y d x=\int_{0}^{1}\left[x y^{2}\right]_{y=0}^{x} d x=\int_{0}^{1} x^{3} d x=\frac{1}{4}$
(c) $V=\int_{0}^{1} \int_{y^{3}}^{y^{2}} \int_{0}^{2 x+y^{2}} d z d y d x=\int_{0}^{1} \int_{y^{3}}^{y^{2}} 2 x+y^{2} d x d y=\int_{0}^{1}\left[x^{2}+x y^{2}\right]_{x=y^{3}}^{y^{2}} d y=$ $\int_{0}^{1} 2 y^{4}-y^{5}-y^{6} d y=\frac{2}{5}-\frac{1}{6}-\frac{1}{7}$

