\qquad Last Name: \qquad
OSU Number: \qquad Signature: \qquad

OKLAHOMA STATE UNIVERSITY
Department of Mathematics
MATH 2144 (Calculus I)
Instructor: Dr. Mathias Schulze

MIDTERM 2

October 29, 2008

Duration: 50 minutes

No aids allowed.
This examination paper consists of $\mathbf{7}$ pages and $\mathbf{6}$ questions. Please bring any discrepancy to the attention of an invigilator. The number in brackets at the start of each question is the number of points the question is worth.

Answer 5 of 6 questions.
To obtain credit, you must give arguments to support your answers.

For graders' use:

	Score
$1(10)$	
$2(10)$	
$3(10)$	
$4(10)$	
$5(0)$	
$6(0)$	
Total (60)	

1. [10] Compute $y^{\prime}=\frac{d y}{d x}$.
(a) $y=5^{4^{x^{2}}}$
(b) $\frac{5}{x}+\frac{5}{y}=3$
(c) $y=\frac{\sin ^{2}(x) \tan ^{6}(x)}{\left(x^{2}+1\right)^{2}}$
(d) $y=\sinh ^{-1}(x)$

Solution:

(a) $y^{\prime}=\ln 5 \cdot 5^{4^{x^{2}}} \cdot \ln 4 \cdot 4^{x^{2}} \cdot 2 \cdot x=2 \cdot \ln 4 \cdot \ln 5 \cdot x \cdot 4^{x^{2}} \cdot 5^{4^{x^{2}}}$
(b) $-5 x^{-2}-5 y^{-2} y^{\prime}=0 \Rightarrow y^{\prime}=-\frac{y^{2}}{x^{2}}=-\frac{1}{x^{2}}\left(\frac{5}{3-\frac{5}{x}}\right)^{2}=-\frac{25}{(3 x-5)^{2}}$
(c) $y^{\prime} / y=(\ln y)^{\prime}=\left(2 \ln \sin x+6 \ln \tan x-2 \ln \left(x^{2}+1\right)\right)^{\prime}=2 \frac{\cos x}{\sin x}+6 \frac{\sec ^{2} x}{\tan x}-\frac{4 x}{x^{2}+1}$
(d) $y^{\prime}=\frac{1}{\sinh ^{\prime}(y)}=\frac{1}{\cosh \left(\sinh ^{-1}(x)\right)}=\frac{1}{\sqrt{1+\sinh ^{2}\left(\sinh ^{-1}(x)\right)}}=\frac{1}{\sqrt{1+x^{2}}}$
2. [10] Compute the limits.
(a) $\lim _{x \rightarrow \infty} \frac{\ln (5 x)}{\sqrt{5 x}}$
(b) $\lim _{x \rightarrow-\infty}\left(x^{2} \cdot e^{2 x}\right)$
(c) $\lim _{x \rightarrow 1}\left(\frac{x}{x-1}-\frac{1}{\ln x}\right)$
(d) $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$

Solution:

(a) $\lim _{x \rightarrow \infty} \frac{\ln (5 x)}{\sqrt{5 x}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{5}{2 \sqrt{5 x}}}=2 \lim _{x \rightarrow \infty} \frac{\sqrt{5 x}}{5 x}=2 \lim _{x \rightarrow \infty} \frac{1}{\sqrt{5 x}}=0$
(b) $\lim _{x \rightarrow-\infty}\left(x^{2} \cdot e^{2 x}\right)=\lim _{x \rightarrow-\infty} \frac{x^{2}}{e^{-2 x}}=\lim _{x \rightarrow-\infty} \frac{2}{4 e^{-2 x}}=\frac{1}{2} \lim _{x \rightarrow-\infty} e^{2 x}=0$
(c) $\lim _{x \rightarrow 1}\left(\frac{x}{x-1}-\frac{1}{\ln x}\right)=\lim _{x \rightarrow 1} \frac{x \ln x-(x-1)}{(x-1) \ln x}=\lim _{x \rightarrow 1} \frac{\ln x+1-1}{\ln x+1-\frac{1}{x}}=\lim _{x \rightarrow 1} \frac{\frac{1}{x}}{\frac{1}{x}+\frac{1}{x^{2}}}=\frac{1}{2}$
(d) $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e^{\lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{1}{x}\right)}{x^{-1}}}=e^{\lim _{x \rightarrow \infty} \frac{\frac{-x^{-2}}{1+\frac{1}{x}}}{-x^{2}}}=e^{\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)}=e$
3. [10]
(a) Find the number c that satisfies the conclusion of the Mean Value Theorem:

$$
f(x)=x^{3}+x-7, \quad[0,2] .
$$

(b) Suppose that $3 \leq f^{\prime}(x) \leq 4$ for all values of x. Find numbers a and b such that

$$
a \leq f(5)-f(3) \leq b
$$

Solution:

(a) $3 c^{2}+1=f^{\prime}(c)=\frac{f(2)-f(0)}{2-0}=\frac{8+2}{2}=5$ gives $c=\frac{2}{\sqrt{3}}$.
(b) $f(5)-f(3)=(5-3) \cdot f^{\prime}(c)$ for some $c \in(3,5)$ and hence $2 \cdot 3 \leq f(5)-f(3) \leq$ $2 \cdot 4$. So $a=6$ and $b=8$ works.
4. [10] A particle moves along the curve $y=\sqrt{1+x^{3}}$. As it reaches the point $(2,3)$, the y-coordinate is increasing at a rate of $12 \mathrm{~cm} / \mathrm{s}$. How fast is the x-coordinate of the point changing at that instant?

Solution: Differentiating $y^{2}=1+x^{3}$ with respect to time gives $2 y \dot{y}=3 x^{2} \dot{x}$ and hence $\dot{x}=\frac{2}{3} \frac{y \dot{y}}{x^{2}}=\frac{2}{3} \frac{3 \cdot 12}{2^{2}} \frac{\mathrm{~cm}}{\mathrm{~s}}=2 \cdot 3 \frac{\mathrm{~cm}}{\mathrm{~s}}=6 \frac{\mathrm{~cm}}{\mathrm{~s}}$.
5. [10] A piece of wire, 10 m long, is cut into 2 pieces. One piece is bent into a square and the other is bent into an equiliteral triangle. How should the wire be cut so that the total area enclosed is a maximum?

Solution:

- Draw a diagram (omitted here).
- Introduce notation: $l=10$ - length of the wire, x - length of first piece, y length of the second piece, a - width/height of the square, b - length of each side of the triangle, h - height of the triangle, A - area of the square, B - area of the triangle, C - total area.
- Write down relations:

$$
l=x+y, x=4 a, A=a^{2}, y=3 b, b^{2}=h^{2}+\frac{1}{4} b^{2}, B=\frac{1}{2} b h, C=A+B .
$$

- Eliminate variables:

$$
C=A+B=a^{2}+\frac{1}{2} b h=a^{2}+\frac{1}{2} \frac{\sqrt{3}}{2} b^{2}=\frac{x^{2}}{4}+\frac{\sqrt{3}}{4 \cdot 9} y^{2}=\frac{1}{4}\left(x^{2}+\frac{\sqrt{3}}{9}(l-x)^{2}\right) .
$$

- Compute citical numbers: $0=\frac{d C}{d x} \Leftrightarrow 0=x-\frac{\sqrt{3}}{9}(l-x) \Leftrightarrow x=\frac{\sqrt{3}}{9+\sqrt{3}} \cdot l$.
- Determine the maximum (closed interval method): $0 \leq x \leq l$

$$
C\left(\frac{\sqrt{3}}{9+\sqrt{3}} \cdot l\right)=\frac{1}{4} \frac{\sqrt{3}}{9+\sqrt{3}} \cdot l^{2}<C(0)=\frac{1}{4} \frac{\sqrt{3}}{9} \cdot l^{2}<C(l)=\frac{1}{4} \cdot l^{2} .
$$

- Result: Use the entire wire for the square to get the maximal total area of 25 square meters.

6. [10] Discuss the properties of the function $f(x)=\frac{2 x^{2}}{x^{2}-1}$ and sketch its graph. Make sure that your discussion covers steps A-H from Section 4.5.

Solution:

- Domain: $x \neq \pm 1$
- Intercepts: $x=0 \Leftrightarrow y=0$, so $(0,0)$ is the only intercept.
- Symmetry: even function, as only squares of x appear.
- Periodicity: none
- Assymptotes: $x= \pm 1, y=2$.
- Derivatives: $f^{\prime}(x)=-\frac{4 x}{\left(x^{2}-1\right)^{2}}, f^{\prime \prime}(x)=4 \frac{3 x^{2}+1}{\left(x^{2}-1\right)^{3}}$.
- Critical points: $f^{\prime}(x)=0 \Rightarrow x=0$, so $(0,0)$ is the only critical point.
- Extrema: $f^{\prime \prime}(0)=-4$, so $(0,0)$ is a local maximum.
- Growth: increasing on $(-\infty,-1) \cup(-1,0)$, increasing on $(0,1) \cup(1, \infty)$.
- Concavity: concave down on $(-1,1)$, concave up on $(-\infty,-1) \cup(1, \infty)$.
- Inflection points: none
- Sketch graph (omitted here).

