Given name: \qquad Family name: \qquad
Student number: \qquad Signature: \qquad

OKLAHOMA STATE UNIVERSITY
Department of Mathematics
MATH 2163 (Calculus III)
Instructor: Mathias Schulze

MIDTERM 3

November 20, 2006

Duration: 50 minutes

No aids allowed
This examination paper consists of $\mathbf{4}$ pages and $\mathbf{6}$ questions. Please bring any discrepancy to the attention of an invigilator. The number in brackets at the start of each question is the number of points the question is worth.

Answer 5 of 6 questions.
To obtain credit, you must explicitly state your result and give arguments to support your answer.

> For graders' use:

	Score
$1(10)$	
$2(10)$	
$3(10)$	
$4(10)$	
$5(10)$	
$6(10)$	
Total (60)	

1. [10] Write the following double and triple integrals as iterated integrals. As usual r, θ are the polar coordinates corresponding to x, y and ρ, θ, ϕ are the spherical coordinates corresponding to x, y, z.
(a) $\iint_{D} f(x, y) d A$ where $D=\{(x, y) \mid g(y) \leq x \leq h(y), a \leq y \leq b\}$.
(b) $\iint_{E} f(x, y) d A$ where $E=\{(x, y) \mid \alpha \leq \theta \leq \beta, u(\theta) \leq r \leq v(\theta)\}$.
(c) $\iiint_{B} f(x, y, z) d V$ where $B=[a, b] \times[u, v] \times[r, s]$.
(d) $\iiint_{S} f(x, y, z) d V$ where $S=\{(x, y, z) \mid(x, y) \in D, g(x, y) \leq z \leq h(x, y)\}$.
(e) $\iiint_{T} f(x, z) d V$ where $T=\{(x, y, z) \mid \alpha(\phi, \theta) \leq \rho \leq \beta(\phi, \theta)\}$.

Solution:

(a) $\int_{a}^{b} \int_{g(x)}^{h(y)} f(x, y) d x d y$
(b) $\int_{\alpha}^{\beta} \int_{u(\theta)}^{v(\theta)} f(r \cos \theta, r \sin \theta) \cdot r d r d \theta$
(c) $\int_{a}^{b} \int_{u}^{v} \int_{r}^{s} f(x, y, z) d z d y d x$
(d) $\iint_{D} \int_{g(x, y)}^{h(x, y)} f(x, y, z) d z d A$
(e) $\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{\alpha(\phi, \theta)}^{\beta(\phi, \theta)} f(\rho \sin \phi \cos \theta, \rho \cos \phi) \cdot \rho^{2} \sin \phi d \rho d \phi d \theta$
2. [10] Use integration to compute the area of a disk with radius R.

Solution: To compute the area of the disk $D=\{(x, y) \mid r \leq R\}$ we integrate the function 1 over D in polar coordinates:

$$
A(D)=\iint_{D} 1 d A=\int_{0}^{2 \pi} \int_{0}^{R} r d r d \theta=\int_{0}^{2 \pi} d \theta \int_{0}^{R} r d r=\frac{2 \pi}{2}\left[r^{2}\right]_{0}^{R}=\pi R^{2}
$$

The result is what we expected.
3. [10] Evaluate the integral $\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{2-y^{2}-y^{2}}\left(x^{2}+y^{2}\right)^{3 / 2} d z d y d x$ by changing to cylindrical coordinates.

Solution: Observe that $-\sqrt{1-x^{2}} \leq y \leq \sqrt{1-x^{2}}$ is equivalent to $y^{2} \leq 1-x^{2}$ and hence to $r \leq 1$ in polar coordinates. Te condition $-1 \leq x=r \cos \theta \leq 1$ is therefore redundant. In other words, there is no restriction for θ. Also note that $\left(x^{2}+y^{2}\right)^{3 / 2}=r^{3}$ in polar coordinates. So the given integral equals

$$
\int_{0}^{2 \pi} \int_{0}^{1} \int_{r^{2}}^{2-r^{2}} r^{3} d z r d r d \theta=4 \pi \int_{0}^{1}\left(1-r^{2}\right) r^{4} d r=4 \pi\left(\frac{1}{5}-\frac{1}{7}\right)=\frac{8 \pi}{35}
$$

4. [10] Find the volume V that lies both within the cylinder $x^{2}+y^{2}=1$ and the sphere $x^{2}+y^{2}+z^{2}=4$.

Solution: This has been a homework problem for lecture 35. Here is the solution:

$$
\begin{aligned}
V & =\int_{0}^{2 \pi} \int_{0}^{1} \int_{-\sqrt{4-r^{2}}}^{\sqrt{4-r^{2}}} 1 d z r d r d \theta=\int_{0}^{2 \pi} d \theta \int_{0}^{1}[z]_{-\sqrt{4-r^{2}}}^{\sqrt{4-r^{2}}} \cdot r d r \\
& =4 \pi \int_{0}^{1} r \sqrt{4-r^{2}} d r=4 \pi\left[-\frac{1}{3} \sqrt{4-r^{2}}\right]_{0}^{1}=-4 \pi \sqrt{3}
\end{aligned}
$$

5. [10] Evaluate $\iiint_{B} x^{2}+y^{2}+z^{2} d V$ where B is the unit ball $x^{2}+y^{2}+z^{2} \leq 1$.

Solution: Note that $x^{2}+y^{2}+z^{2}=\rho^{2}$ in spherical coordinates and hence

$$
\begin{aligned}
\iiint_{B} x^{2}+y^{2}+z^{2} d V & =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} \rho^{2} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{\pi} \sin \phi d \phi \int_{0}^{1} \rho^{4} d \rho \\
& =2 \pi[-\cos \phi]_{0}^{\pi} \frac{1}{5} \\
& =\frac{4 \pi}{5}
\end{aligned}
$$

6. [10] Find the mass center of a solid hemisphere H of radius 1 centered at the origin above the $x-y$-plane where the density equals z.

Solution: This is a simplified version of a homework problem for lecture 36. Here is the solution: In cylindrical coordinates, the density is $z=\rho \cos \phi$. So the mass of the object is given by

$$
\begin{aligned}
m & =\iiint_{H} z d V=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{1} \rho \cos \phi \cdot \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{\pi / 2} \frac{1}{2} \sin (2 \phi) d \phi \int_{0}^{1} \rho^{3} d \rho=2 \pi\left[-\frac{1}{4} \cos (2 \phi)\right]_{0}^{\pi / 2} \frac{1}{4}=\frac{\pi}{4}
\end{aligned}
$$

For symmetry reasons the mass center has x - and y-coordinate equal to 0 . Its z-coordinate is given by the formula

$$
\begin{aligned}
m \cdot \bar{z} & =\iiint_{H} z^{2} d V=\int_{0}^{2 \pi} d \theta \int_{0}^{\pi / 2} \cos ^{2} \phi \sin \phi d \phi \int_{0}^{1} \rho^{4} d \rho \\
& =2 \pi\left[-\frac{1}{3} \cos ^{3} \phi\right]_{0}^{\pi / 2} \frac{1}{5}=\frac{2 \pi}{15}
\end{aligned}
$$

From the calculation of m above we conclude that $\bar{z}=\frac{1}{m} \frac{2 \pi}{15}=\frac{8}{15}$. Thus $\left(0,0, \frac{8}{15}\right)$ is the mass center of the given hemisphere H.

End of examination

Total pages: 4
Total marks: 60

