Given name:_____ Family name:_____

Student number:______ Signature:_____

OKLAHOMA STATE UNIVERSITY **Department of Mathematics**

MATH 2163 (Calculus III) Instructor: Mathias Schulze

MIDTERM 3 November 20, 2006

Duration: 50 minutes

No aids allowed

This examination paper consists of 4 pages and 6 questions. Please bring any discrepancy to the attention of an invigilator. The number in brackets at the start of each question is the number of points the question is worth.

Answer 5 of 6 questions.

To obtain credit, you must explicitly state your result and give arguments to support your answer.

For graders' use:

	Score
1 (10)	
2 (10)	
3 (10)	
4 (10)	
5 (10)	
6 (10)	
Total (60)	

Page 1 of 4

- 1. [10] Write the following double and triple integrals as iterated integrals. As usual r, θ are the polar coordinates corresponding to x, y and ρ , θ , ϕ are the spherical coordinates corresponding to x, y, z.
 - (a) $\iint_D f(x, y) \, dA$ where $D = \{(x, y) \mid g(y) \le x \le h(y), a \le y \le b\}.$
 - (b) $\iint_E f(x,y) dA$ where $E = \{(x,y) \mid \alpha \le \theta \le \beta, u(\theta) \le r \le v(\theta)\}.$
 - (c) $\iiint_B f(x, y, z) dV$ where $B = [a, b] \times [u, v] \times [r, s]$.
 - (d) $\iiint_{S} f(x, y, z) \, dV$ where $S = \{(x, y, z) \mid (x, y) \in D, g(x, y) \le z \le h(x, y)\}.$
 - (e) $\iiint_T f(x,z) \, dV$ where $T = \{(x,y,z) \mid \alpha(\phi,\theta) \le \rho \le \beta(\phi,\theta)\}.$

Solution:

- (a) $\int_{a}^{b} \int_{g(x)}^{h(y)} f(x, y) \, dx \, dy$
- (b) $\int_{\alpha}^{\beta} \int_{u(\theta)}^{v(\theta)} f(r\cos\theta, r\sin\theta) \cdot r \, dr \, d\theta$

- (c) $\int_{a}^{b} \int_{u}^{v} \int_{r}^{s} f(x, y, z) dz dy dx$ (d) $\int \int_{D} \int_{g(x,y)}^{h(x,y)} f(x, y, z) dz dA$ (e) $\int_{0}^{2\pi} \int_{0}^{\pi} \int_{\alpha(\phi,\theta)}^{\beta(\phi,\theta)} f(\rho \sin \phi \cos \theta, \rho \cos \phi) \cdot \rho^{2} \sin \phi d\rho d\phi d\theta$

- 2. [10] Use integration to compute the area of a disk with radius R.
 - **Solution:** To compute the area of the disk $D = \{(x, y) \mid r \leq R\}$ we integrate the function 1 over D in polar coordinates:

$$A(D) = \iint_D 1 \, dA = \int_0^{2\pi} \int_0^R r \, dr \, d\theta = \int_0^{2\pi} d\theta \int_0^R r \, dr = \frac{2\pi}{2} [r^2]_0^R = \pi R^2$$

The result is what we expected.

- 3. [10] Evaluate the integral $\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{x^2+y^2}^{2-x^2-y^2} (x^2+y^2)^{3/2} dz dy dx$ by changing to cylindrical coordinates.
 - **Solution:** Observe that $-\sqrt{1-x^2} \le y \le \sqrt{1-x^2}$ is equivalent to $y^2 \le 1-x^2$ and hence to $r \le 1$ in polar coordinates. Te condition $-1 \le x = r \cos \theta \le 1$ is therefore redundant. In other words, there is no restriction for θ . Also note that $(x^2 + y^2)^{3/2} = r^3$ in polar coordinates. So the given integral equals

$$\int_0^{2\pi} \int_0^1 \int_{r^2}^{2-r^2} r^3 \, dz \, r \, dr \, d\theta = 4\pi \int_0^1 (1-r^2) r^4 \, dr = 4\pi \left(\frac{1}{5} - \frac{1}{7}\right) = \frac{8\pi}{35}$$

4. [10] Find the volume V that lies both within the cylinder $x^2 + y^2 = 1$ and the sphere $x^2 + y^2 + z^2 = 4$.

Solution: This has been a homework problem for lecture 35. Here is the solution:

$$V = \int_0^{2\pi} \int_0^1 \int_{-\sqrt{4-r^2}}^{\sqrt{4-r^2}} 1 \, dz \, r \, dr \, d\theta = \int_0^{2\pi} d\theta \int_0^1 [z]_{-\sqrt{4-r^2}}^{\sqrt{4-r^2}} \cdot r \, dr$$
$$= 4\pi \int_0^1 r \sqrt{4-r^2} \, dr = 4\pi \left[-\frac{1}{3} \sqrt{4-r^2}^3 \right]_0^1 = -4\pi \sqrt{3}$$

5. [10] Evaluate $\iiint_B x^2 + y^2 + z^2 dV$ where B is the unit ball $x^2 + y^2 + z^2 \leq 1$.

Solution: Note that $x^2 + y^2 + z^2 = \rho^2$ in spherical coordinates and hence

$$\iiint_B x^2 + y^2 + z^2 \, dV = \int_0^{2\pi} \int_0^{\pi} \int_0^1 \rho^2 \, \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$
$$= \int_0^{2\pi} d\theta \int_0^{\pi} \sin \phi \, d\phi \int_0^1 \rho^4 \, d\rho$$
$$= 2\pi [-\cos \phi]_0^{\pi} \frac{1}{5}$$
$$= \frac{4\pi}{5}$$

- 6. [10] Find the mass center of a solid hemisphere H of radius 1 centered at the origin above the x-y-plane where the density equals z.
 - **Solution:** This is a simplified version of a homework problem for lecture 36. Here is the solution: In cylindrical coordinates, the density is $z = \rho \cos \phi$. So the mass of the object is given by

$$m = \iiint_{H} z \, dV = \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{1} \rho \cos \phi \cdot \rho^{2} \sin \phi \, d\rho \, d\phi \, d\theta$$
$$= \int_{0}^{2\pi} d\theta \int_{0}^{\pi/2} \frac{1}{2} \sin(2\phi) \, d\phi \int_{0}^{1} \rho^{3} \, d\rho = 2\pi \left[-\frac{1}{4} \cos(2\phi) \right]_{0}^{\pi/2} \frac{1}{4} = \frac{\pi}{4}.$$

For symmetry reasons the mass center has x- and y-coordinate equal to 0. Its z-coordinate is given by the formula

$$m \cdot \bar{z} = \iiint_{H} z^{2} dV = \int_{0}^{2\pi} d\theta \int_{0}^{\pi/2} \cos^{2} \phi \sin \phi \, d\phi \int_{0}^{1} \rho^{4} \, d\rho$$
$$= 2\pi \left[-\frac{1}{3} \cos^{3} \phi \right]_{0}^{\pi/2} \frac{1}{5} = \frac{2\pi}{15}.$$

From the calculation of m above we conclude that $\bar{z} = \frac{1}{m} \frac{2\pi}{15} = \frac{8}{15}$. Thus $(0, 0, \frac{8}{15})$ is the mass center of the given hemisphere H.

End of examination Total pages: 4 Total marks: 60