Given name: \qquad Family name: \qquad
Student number: \qquad Signature: \qquad

OKLAHOMA STATE UNIVERSITY
Department of Mathematics
MATH 2163 (Calculus III)
Instructor: Mathias Schulze

MIDTERM 1

September 22, 2006
Duration: 50 minutes
No aids allowed
This examination paper consists of $\mathbf{4}$ pages and $\mathbf{6}$ questions. Please bring any discrepancy to the attention of an invigilator. The number in brackets at the start of each question is the number of points the question is worth.

Answer 5 of 6 questions.
To obtain credit, you must give arguments to support your answers.

For graders' use:

	Score
$1 \quad(0)$	
$2(10)$	
$3(10)$	
$4(10)$	
$5(10)$	
$6(10)$	
Total (60)	

1. [10] For the vectors $\vec{v}=4 \vec{i}+3 \vec{k}$ and $\vec{w}=\langle 1,1,1\rangle$ (where $\vec{i}, \vec{j}, \vec{k}$ are the unit vectors), compute the following expressions: $|\vec{v}|, \vec{v}-2 \vec{w}, \vec{v} \cdot \vec{w}$, and $\vec{v} \times \vec{w}$. Are \vec{v} and \vec{w} orthogonal or parallel?

Solution:

- $|\vec{v}|=|\langle 4,0,3\rangle|=\sqrt{4^{2}+0^{2}+3^{2}}=\sqrt{16+0+9}=\sqrt{25}=5$
- $\vec{v}-2 \vec{w}=\langle 4,0,3\rangle-2\langle 1,1,1\rangle=\langle 4-2 \cdot 1,0-2 \cdot 1,3-2 \cdot 1\rangle=\langle 2,-2,1\rangle$
- $\vec{v} \cdot \vec{w}=\langle 4,0,3\rangle \cdot\langle 1,1,1\rangle=4 \cdot 1+0 \cdot 1+3 \cdot 1=7$
- $\vec{v} \times \vec{w}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 4 & 0 & 3 \\ 1 & 1 & 1\end{array}\right|=(0 \cdot 1-3 \cdot 1) \vec{i}+(3 \cdot 1-4 \cdot 1) \vec{j}+(4 \cdot 1-0 \cdot 1) \vec{k}=\langle-3,-1,4\rangle$
- \vec{v} and \vec{w} are not orthogonal because $\vec{v} \cdot \vec{w}=7 \neq 0$.
- \vec{v} and \vec{w} are not parallel because $\vec{v} \times \vec{w}=\langle-3,-1,4\rangle \neq \overrightarrow{0}$.

2. [10] Compute one of the angles in the triangle with vertices $A(-1,0,1), B(0, \sqrt{3}, 1)$, $C(1,0,1)$.

Solution: We choose to compute the angle at the vertex A, call it α. (Actually all three angles are equal.) The two edges of the triangle that meet in the vertex A are given by the vectors $\vec{v}=\overrightarrow{A B}=\langle 1, \sqrt{3}, 0\rangle$ and $\vec{w}=\overrightarrow{A C}=\langle 2,0,0\rangle$ respectively. Then α is the angle between \vec{v} and \vec{w} which can be computed using the formula

$$
\cos \alpha=\frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|}=\frac{2}{\sqrt{1+3} \cdot 2}=\frac{1}{2} .
$$

From $\cos \alpha=\frac{1}{2}$ we conclude that $\alpha=\frac{\pi}{3}=60^{\circ}$.
3. [10] What are the geometrical interpretations of the following expressions?
(a) $\frac{\vec{a}}{|\vec{a}|}$
(b) $|\vec{a} \times \vec{b}|$
(c) $|\vec{a} \cdot(\vec{b} \times \vec{c})|$
(d) $\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}} \vec{a}$
(e) $\frac{\left|a x_{0}+b y_{0}+c z_{0}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}$

Write 5 short sentences like (b) is the height of the triangle with edges \vec{a} and \vec{b}.

Solution:

(a) is the unit vector (vector of length 1) in direction of \vec{a}.
(b) is the area of the parallelogram spanned by \vec{a} and \vec{b}.
(c) is the volume of the parallelepiped spanned by the vectors \vec{a}, \vec{b}, and \vec{c}.
(d) is the (vector) projection of \vec{b} to the line along the vector \vec{a}.
(e) is the distance between $P\left(x_{0}, y_{0}, z_{0}\right)$ and the plane $a x+b y+c z+d=0$.
4. [10] Determine the equation of the plane perpendicular to $\vec{n}=\langle 0,4,3\rangle$ which contains the point $P(3,2,1)$. What is the distance of the point $Q(0,1,0)$ from this plane?

Solution: The general (linear) equation of a plane is $a x+b y+c z=d$ or

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

where $\langle a, b, c\rangle$ is the normal vector. For the second equation it is obvious that the point $P\left(x_{0}, y_{0}, z_{0}\right)$ is in the plane because substituting $x=x_{0}, y=y_{0}, z=z_{0}$ yields 0 on the left hand side.
In our case $\vec{n}=\langle 0,4,3\rangle$ is the normal vector and $x_{0}=3, y_{0}=2, z_{0}=1$ are the coordiantes of a point in the plane. So the equation of the plane is $0(x-3)+4(y-2)+3(z-1)=0$ or equivalently

$$
4 y+3 z=4 \cdot 2+3 \cdot 1=11 .
$$

Note that $a=0, b=4, c=3$, and $d=11$. Denote the coordinates of Q by $x_{1}=0, y_{1}=1, z_{1}=0$. Then the distance of Q from this plane is

$$
D=\frac{\left|a x_{1}+b y_{1}+c z_{1}-d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}=\frac{|4 \cdot 1-11|}{\sqrt{4^{2}+3^{2}}}=\frac{7}{5} .
$$

5. [10] Determine the domain of the function $f(x, y)=\sqrt{x^{2}-y}$ and compute the linearization of $f(x, y)$ at $\langle 3,5\rangle$.

Solution: The only constraint for the domain is that the expression under the root must be positive. This means $x^{2}-y \geq 0$ or equivalently $y \leq x^{2}$ and hence the domain of f is

$$
D=\left\{(x, y) \in \mathbb{R}^{2} \mid y \leq x^{2}\right\}
$$

The partial derivatives of f are

$$
f_{x}(x, y)=\frac{x}{\sqrt{x^{2}-y}}, \quad f_{y}(x, y)=-\frac{1}{2 \sqrt{x^{2}-y}}
$$

Note that at $\langle 3,5\rangle, \sqrt{x^{2}-1}=\sqrt{9-5}=2$. So the linearization of f at $\langle 3,5\rangle$ is

$$
\begin{aligned}
L(x, y) & =f(3,5)+f_{x}(3,5)(x-3)+f_{y}(3,5)(y-5) \\
& =2+\frac{3}{2}(x-3)-\frac{5}{4}(y-5) \\
& =\frac{8-18+25}{4}+\frac{3}{2} x-\frac{5}{4} y \\
& =\frac{3 x}{2}+\frac{5 y}{4}+\frac{15}{4}
\end{aligned}
$$

6. [10] Compute the total differential of $f(x, y)=e^{x y}$ and use it to estimate $f(1.1,1.1)$.

Solution: The partial derivatives of f are $f_{x}(x, y)=y e^{x y}$ and $f_{y}(x, y)=x e^{x y}$. So the total differential of f is

$$
d f=d z=e^{x y}(y d x+x d y)
$$

To estimate $f(1.1,1.1)$ we choose $x=y=1$ because $\langle 1,1\rangle$ is close to $\langle 1.1,1.1\rangle$ and we can easily compute $e^{1 \cdot 1}=e$. Then $d x=1.1-x=0.1$ and $d y=1.1-y=0.1$ and hence

$$
d z=e^{1 \cdot 1}(1 \cdot 0.1+1 \cdot 0.1)=0.2 \cdot e
$$

We approximate $d z \approx \Delta z=f(x+d x, y+d y)-f(x, y)=f(1.1,1.1)-f(1,1)$ and conclude that

$$
f(1.1,1.1) \approx f(1,1)+d z=e+0.2 \cdot e=1.2 \cdot e
$$

End of examination

Total pages: 4
Total marks: 60

