Given name: \qquad Family name: \qquad
Student number: \qquad Signature: \qquad

OKLAHOMA STATE UNIVERSITY
Department of Mathematics
Calculus III (MATH 2163)
Instructor: Mathias Schulze
FINAL EXAM
December 11/15, 2006

Duration: 110 minutes

No aids allowed.
This examination paper consists of $\mathbf{5}$ pages and $\mathbf{8}$ questions. Please bring any discrepancy to the attention of an invigilator. The number in brackets at the start of each question is the number of points the question is worth.

Answer 7 of 8 questions.
To obtain credit, you must explicitly state your result and give arguments to support your answer.

> For graders' use:

	Score
$1(10)$	
$2(10)$	
$3(10)$	
$4(10)$	
$5(10)$	
$6(10)$	
$7(10)$	
$8(10)$	
Total (80)	

1. [10] Find the linearization of the function $f(x, y)=\sqrt{20-x^{2}-7 y^{2}}$ at $(2,1)$ and write it in the form $L(x, y)=a+b x+c y$. Use your result to approximate $f(1.95,1.08)$. Write down the differential of f explicitly.

Solution: In the review session I recommended to review linearization and differential at home. The first part was even a homework problem for Lecture 10.
First compute the partial derivatives,

$$
f_{x}=-\frac{x}{\sqrt{20-x^{2}-7 y^{2}}}, \quad f_{y}=-\frac{7 y}{\sqrt{20-x^{2}-7 y^{2}}}
$$

and evaluate at $(2,1), f(2,1)=3, f_{x}(2,1)=-\frac{2}{3}, f_{y}(2,1)=-\frac{7}{3}$. Then the linearization of f at $(2,1)$ is given by the formula

$$
\begin{aligned}
L(x, y) & =f(2,1)+f_{x}(2,1)(x-2)+f_{y}(2,1)(y-1) \\
& =3-\frac{2}{3}(x-2)-\frac{7}{3}(y-1)=3+\frac{4}{3}+\frac{7}{3}-\frac{2}{3} x-\frac{7}{3} y=\frac{20}{3}-\frac{2}{3} x-\frac{7}{3} y .
\end{aligned}
$$

The linear approximation of f at $(1.95,1.08)$ is

$$
f(1.95,1.08) \approx L\left(2-\frac{5}{100}, 1+\frac{8}{100}\right)=3+\frac{2 \cdot 5}{3 \cdot 100}-\frac{7 \cdot 8}{3 \cdot 100}=\frac{427}{150} \approx 2.847
$$

The total differential of f is

$$
d f=f_{x} d x+f_{y} d y=-\frac{x d x+7 y d y}{\sqrt{20-x^{2}-7 y^{2}}} .
$$

2. [10] Compute the gradient of $f(x, y)=\frac{y^{2}}{x}$. Determine the maximal and minimal rates of change of f at $(2,4)$ and unit vectors in the directions in which these rates of change occur. Find a unit vector in a direction in which f has zero rate of change at $(2,4)$.

Solution: In the review session I recommended to review gradient, directional derivative, and rate of change at home.
The gradient equals

$$
\vec{\nabla} f(x, y)=\left\langle-\frac{y^{2}}{x^{2}}, 2 \frac{y}{x}\right\rangle .
$$

The maximal and minimal/minimal rate of change of f at $(2,4)$ equals $\pm|\vec{\nabla} f(2,4)|=$ $\pm|\langle-4,4\rangle|= \pm 4 \sqrt{2}$ and occurs in direction of

$$
\pm \frac{\vec{\nabla} f(2,4)}{|\vec{\nabla} f(2,4)|}= \pm \frac{\langle-4,4\rangle}{4 \sqrt{2}}=\left\langle\mp \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}\right\rangle
$$

Orthogonally to these directions the rate of change of f at $(2,4)$ is zero. The corresponding unit vectors are simply $\pm\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$.
3. [10] Use Lagrange multipliers to find the maximal and minimal values of the function $f(x, y)=x^{2} y^{2}$ subject to the constraint $x^{2}+y^{2}=1$. (Hint: There are 8 critical points.)

Solution: This is essentially a simplified version of a problem discussed in the review session and of a homework problem for Lecture 19.
The gradients of f and g are

$$
\vec{\nabla} f=2\left\langle x y^{2}, x^{2} y\right\rangle, \quad \vec{\nabla} g=2\langle x, y\rangle .
$$

By the method of Lagrange multipliers, we have to solve the system

$$
x y^{2}=\lambda x, \quad x^{2} y=\lambda y, \quad x^{2}+y^{2}=1 .
$$

By the last equation and symmetry we may assume that $x \neq 0$. Then the first equation gives $\lambda=y^{2}$ and substituting into the second yields $\left(x^{2}-y^{2}\right) y=0$. So either $y=0$, and hence $x= \pm 1$ by the third equation, or $0=x^{2}-y^{2}=$ $(x-y)(x+y)$. In this latter case $x= \pm y$ and the third equality gives $|x|=|y|=\frac{1}{\sqrt{2}}$. Reconsidering or symmetry argument, we have found 8 points: $(\pm 1,0),(0, \pm 1)$, $\left(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}\right),\left(\pm \frac{1}{\sqrt{2}}, \mp \frac{1}{\sqrt{2}}\right)$. The function f is zero at the former 4 points and equals $\frac{1}{4}$ at the latter 4 points. So 0 is the only minimal value and $\frac{1}{4}$ is the only maximal value of f subject to the given constraint.
4. [10] Use spherical coordinates to find the volume of the solid that lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=z$.

Solution: This is Example 4 in Section 16.8 and has been discussed in class. In the review session I recommended to review volume computations in spherical coordinates at home.
5. [10] Integrate the vector field

$$
\vec{F}(x, y)=\left\langle y-\frac{x}{{\sqrt{x^{2}+y^{2}}}^{3}},-x-\frac{y}{{\sqrt{x^{2}+y^{2}}}^{3}}\right\rangle
$$

along a clockwise oriented unit circle C centered at the origin. (Hint: Write \vec{F} as a sum of two vector fields.) Explain why \vec{F} is not conservative.

Solution: All ideas to solve this problem have been discussed in the review session. The vector field decomposes as $\vec{F}=\vec{G}+\vec{H}$ where $\vec{G}(x, y)=\langle y,-x\rangle$ and

$$
\vec{H}(x, y)=\left\langle-\frac{x}{{\sqrt{x^{2}+y^{2}}}^{3}},-\frac{y}{{\sqrt{x^{2}+y^{2}}}^{3}}\right\rangle .
$$

Up to constants, \vec{H} is just the gravitational/electric force known from the lecture. Hence $\vec{H}=\vec{\nabla} h$ is conservative where, again up to constants, $h(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}}}$ is the gravitational/electric potential. By the fundamental theorem of line integrals $\int_{C} \vec{H} \cdot d \vec{r}=0$ and so

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} \vec{G} \cdot d \vec{r} .
$$

A clockwise parametrization of C is given by $\vec{r}(t)=\langle\cos t,-\sin t\rangle$ where $0 \leq t \leq$ 2π and hence

$$
\begin{aligned}
\int_{C} \vec{G} \cdot d \vec{r} & =\int_{0}^{2 \pi} \vec{G}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t \\
& =\int_{0}^{2 \pi}\langle-\sin t,-\cos t\rangle \cdot\langle-\sin t,-\cos t\rangle d t=\int_{0}^{2 \pi} d t=2 \pi
\end{aligned}
$$

In particular, this result tells us that \vec{F} can not be conservative because integrals of conservative vector fields along closed curves are always zero.
6. [10] Evaluate the line integral $\int_{C} z d x+x d y+y d z$ where C is the curve parametrized by $x(t)=t, y(t)=t^{2}, z(t)=t^{3}$ for $0 \leq t \leq 1$.

Solution: This is equivalent to a homework problem for Lecture 41. Moreover, line integral w.r.t. coordinates have been discussed in the review session.
One computes

$$
\begin{aligned}
\int_{C} z d x+x d y+y d z & =\int_{0}^{1} z(t) x^{\prime}(t)+x(t) y^{\prime}(t)+y(t) z^{\prime}(t) d t \\
& =\int_{0}^{1} t^{3} \cdot 1+t \cdot 2 t+t^{2} \cdot 3 t^{2} d t \\
& =\frac{1}{4}+\frac{2}{3}+\frac{3}{5}=\frac{15+40+36}{60}=\frac{91}{60} .
\end{aligned}
$$

Page 4 of 5
7. [10] Compute the mass center of the circular cone C with constant density ρ defined by the inequalities $0 \leq z \leq 1-r$.

Solution: A slightly modified version of this problem has been discussed in the review session.
By symmetry reasons the x - and y-coordinates of the mass center equal 0 . Its z-coordinate is computed by the integral

$$
\bar{z}=\frac{\int_{C} z \rho d V}{\int_{C} \rho d V}=\frac{\int_{C} z d V}{\int_{C} d V} .
$$

To compute each of these integrals we use polar coordinates. There are values of z such that $0 \leq z \leq 1-r$ exactly if $r \leq 1$. Therefore

$$
\int_{C} d V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1-r} d z r d r d \theta=2 \pi \int_{0}^{1} r-r^{2} d r=2 \pi\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{\pi}{3}
$$

and similarly

$$
\int_{C} z d V=\pi \int_{0}^{1}(1-r)^{2} r d r=\pi \int_{0}^{1} r-2 r^{2}+r^{3} d r=\pi\left(\frac{1}{2}-\frac{2}{3}+\frac{1}{4}\right)=\frac{\pi}{12} .
$$

Thus $\bar{z}=\frac{1}{4}$ and the mass center is $\left(0,0, \frac{1}{4}\right)$.
8. [10] Determine whether or not the vector field $\vec{F}=\langle 6 x+5 y, 5 x+4 y\rangle$ is conservative. If it is, find a potential for \vec{F}. How many potentials for \vec{F} are there?

Solution: This example is known from the review session.
Set $P=6 x+5 y$ and $Q=5 x+4 y$ such that $\vec{F}=\langle P, Q\rangle$. Then $\frac{\partial P}{\partial y}=5=\frac{\partial Q}{\partial y}$ and hence \vec{F} is conservative by the criterion from the lecture.
To find f we have to solve $\langle P, Q\rangle=\vec{F}=\vec{\nabla} f=\left\langle f_{x}, f_{y}\right\rangle$ and hence the system of linear partial differential equations

$$
6 x+5 y=f_{x}, \quad 5 x+4 y=f_{y} .
$$

Integrating the first equation gives $3 x^{2}+5 x y+g=f$ for some function $g=g(y)$. Substituting into the second equation we find $5 x+g^{\prime}=f_{y}=5 x+4 y$ and then $g=2 y^{2}+c$ for any constant c.
By computing the gradient, we easily verify that $f=3 x^{2}+5 x y+2 y^{2}+c$ is really a potential for \vec{F} for any constant c. In particular, there is an infinite number of such potentials, a different one for each real number c.

End of examination

Total pages: 5

Total marks: 80

