ON THE TRIANGULATED STRUCTURE
OF STABLE MONOMORPHISM CATEGORIES

JONAS FRANK AND MATHIAS SCHULZE

ABsTrRACT. We investigate the triangulated structure of stable monomorphism categories (filtered chain
categories) over a Frobenius category. The high degree of symmetry of linear quivers leads to a plethora
of semiorthogonal decompositions into smaller categories of the same type. These form polygons of
recollements, in which a full turn of mutations is a power of a particular auto-equivalence of the stable
monomorphism category. A certain power of this auto-equivalence is the square of the suspension
functor. We describe the infinite chains of adjoint pairs obtained from the polygons. As an application,
we explicate the construction of Bondal and Kapranov for lifting representing objects of dualized hom-

functors in our setup.
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1. INTRODUCTION

A celebrated result of Buchweitz’s gives a triangle equivalence between the singularity category of a
Gorenstein ring R and the stable category of maximal Cohen-Macaulay, that is, Gorenstein projective
R-modules, see [Buc21, Thm. 4.4.1]. Over a hypersurface ring R = S/(f), the latter category is
triangle equivalent to the homotopy category of matrix factorizations of f (with two factors) due to
Eisenbud’s Theorem, see [ Yos90, Thm. 7.4].

In [FS24, Thm. 3.37] and [BM24, Thms. 4.12, 5.3], Buchweitz’s theorem was generalized, replacing
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2 J. FRANK AND M. SCHULZE

the category of Gorenstein projective modules by the monomorphism category Mor;"(¥), consisting

of chains
1 -1

0
X=Xa: X' "5 X' "5 ... x5 X\

of [ admissible monomorphisms over a Frobenius subcategory ¥ of an exact category &. This is a
fully exact subcategory of the category Mor;(E) of chains of / morphisms in &. For the subcategory 7
of Gorenstein projectives of suitable module categories & Mor, () is the subcategory of Gorenstein
projectives of Mor;(&), see [JK11, Cor. 3.6] and [SZ24, Thm. 4.1]. The triangle equivalence with
matrix factorizations generalizes to factorizations with [ + 2 factors, see [SZ24, Thm. 4.6]. Notably,
the (homotopy) category of such factorizations has a cyclic symmetry.

In this article, we investigate the triangulated structure of the above mentioned stable category M; :=
Mor™ (F). Our approach is inspired by the work of Iyama, Kato, and Miyachi on the homotopy cate-
gory of complexes over split monomorphism categories, see [[KM16, §4]. We consider two operations
relating chains of monomorphisms of different lengths: By contraction of an interval [s,¢] € {0, ..., [},
a chain X = (X, @) € Mor}"(F) as above is sent to

s=2 t+1 -1

0 t..5—1
,y[s,t](X): X0, @ RN x5l g o xrdl L @ sl X! EMOI';EH_S_](T),

by expansion with identities to

s

0 s—1 I-1
X)) X0t s s X =— .. ==X >"5 - > X e Mor]},_(F).

Both assignments give rise to exact functors inducing triangulated functors y!% and §!" between
the respective stable categories. The kernel '/l of y!5/ and the image Al*/l of §!*/ (with [ replaced
by [ — t + s) are triangulated subcategories of Mor™ (7). These occur in various semiorthogonal

decompositions:

Theorem A. The category Mor™ (F) admits the following semiorthogonal decompositions:

(a) (DU TOST) yrg <,

(b) (T Al e <,

(c) (AB=H T f s > 0.

From these decompositions, we derive further results. Two semiorthogonal decompositions (U, V)

and (V, W) define a recollement, see [IKM16, Prop. 1.2]. As a direct consequence, we find a family

of polygons of recollements:
Theorem B. There are the following (21 + 4)-gons of recollements in Mor™ (F) for s < I:
A[O,s+1] e 5 r[k,k+s] 5 A[k,k+s+1] > I—~[k+1,k+s+1] N r[l—s,l]
v ™
rl0.s] l0-s-1]
AN L o Lo o AlkHLA+=s+1] o plktLkti=s] o Alkk+=s] ... o AlOJ=s] e

We describe the left mutations L defined by the recollements in these polygons explicitly in terms of

an auto-equivalence ® of Mor™ (¥), see Construction 5.3, which corresponds to the rotation functor
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for matrix factorizations with [ + 2 factors. The result can be visualized by two nested polygons of
triangle equivalences, see Figure 1, where 61/ is another type of expansion functor with image '],
see Construction 5.2.

le.vf 1 lesf 1
id
sls+l W€
/L\/ 5l0.5+1]
1081 .
r[.v+ 1,1 A[O,.v+|] lesfl

\_/ \% F[ Ls+1]
L sl0s1° L si1s+2)
slls+ B

o A[l.s+2]
M

MS J \_% MS Lik=1)

id [C] .
id o1
lk.s+K1C
— e
stki—sei M M,
id @ll-s—k-1} A[k,s+k+l]
—
k-1 \ Li=s—k=1) Slkos+h+1] Ml—s—l
M

5 <dd o — M;
id \/
— N
[[-s—1,1-1]
S5 M, M, 2
—s)
L

A[l,l—.v+|] r[l—s—l,l—l]
L
510,
l—*[l,l—s] -

é[l—x,l][‘ L
A[l—s—l,[]
/_\
§“’lis]£ AlO,l—xJ F[O,]*S*l] r[l—s,l]
6[’7.\'71,[]
L L B
[ ]

My sl0=5-11¢ Mg

’\@_/ Mo Mld/

Ficure 1. Polygons of recollements and mutations

@ls—k}

Lk=1)

Alkl=s+K]

6“‘"’”“’l]t‘l—*[k,l—ﬁk—l]
g

Ml—x—l

pl=s—k=1}

A full turn of left mutations in each such polygons corresponds to a certain power of ®. We relate
such powers to the suspension functor X of Mor™ (), which shows, in particular, that ¥? = id for
matrix factorizations with [ + 2 factors, see [Tri21, Prop. 5.3]:

Theorem C. There is an isomorphism @2 = X2 of endofunctors on Mor™ ().

There is a triangle equivalence between Mor™ () and the homotopy category of acyclic (I + 2)-
complexes over ¥ with projective objects, see [FS24, Thm. 2.50], under which ® corresponds to the
shift functor and Theorem C to [IKM17, Thm. 2.4].
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2 Ls.11°

We include two further types of contraction functors ¥ and %I, see Construction 6.2, to form

infinite adjoint chains:
Theorem D. There are the following infinite adjoint chains:
C g @S2 lims- L2 g2 | @glimsi-ll  slimsi=lli gl glimst LI slims+ Ll
G0l L g lem L] lem Ll I glsart] o LerLil] 4y L]

1 é[O,l—t+s—1]C 4 i[o,l—z+s—1]” 1 é[l,l—l‘+S]C® 4 @—li[l,l—l‘+s]c 1 é[Z,l—t+S+1](®2 1 @—21[2,[—[+S+1]C 4...

As an application of our results, we explicitly describe representing objects of dualized hom-functors
on Mor™ () lifted from # using the construction of Bondal and Kapranov:

Theorem E. Let F be a Frobenius category, linear over a field, such that ¥ is finite-finite. Suppose
that the dualized hom-functors Hom(A, —)*: & — Vect for all A € ¥ are representable. Then the
dualized hom-functor Hom(X, —)*: Mor™ (%) — Vect for any X = (X, @) € Mor(¥) is representable

by an object, obtained as the rightmost column of any diagram

00 RO, %02 ... %012 o 011 01
I O O O O O O
N < B N o N ¢ W SR o Wos BRI 1o

O O O O O
| N o NN o X o RN o N SN o X
O O O
?— ...
O O

11—2 5 Xl—l,l—l N Xl—l,l

O

Il—l N Xl,l,

of bicartesian squares in F with I’ € Inj(F), where the first row consists of the representing objects
X% of Hom(X/, =)* and the morphisms corresponding to .

In particular, if # admits a Serre functor sending the diagram in ¥ defined by any X € Mor}"(F) to
the one defined by the first row of the diagram in Theorem E, then Mor™ (") admits a Serre functor,
sending X to X, see [BK89, Prop. 3.4.(a)]. It remains to describe this Serre functor on morphisms.

Theorem A summarizes Propositions 4.1 and 4.4 of the main part. Theorems B to D correspond to
Corollary 4.7, Proposition 5.5, and Theorem 6.5. Theorem E joins Theorem 7.7 and Proposition 7.8.
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2. TRIANGULATED CATEGORIES OF MONOMORPHISMS

In this section, we review preliminaries on monomorphism categories in the context of exact and
triangulated categories.

Unless stated otherwise, all (sub)categories and functors considered are assumed to be (full) additive.
Our main reference on the topic of triangulated categories is Neeman’s book [NeeOl]. However,
we require the more general definition of a triangulated category whose suspension functor is only
an auto-equivalence instead of an automorphism. These two definitions agree up to a triangulated
equivalence, see [KV87, §2] and [MayO1, §2].

Recall that a triangle equivalence is a triangulated functor which is an equivalence of categories.
Its quasi-inverse is automatically a triangulated functor, see [BK89, Prop. 1.4] for a more general
statement.

Definition 2.1. A pair (U, V) of triangulated subcategories of a triangulated category 7 is called a
semiorthogonal decomposition of 7~ if

(a) Homg~(U,V) = 0 and
(b) each T € 7 fits into a distinguished triangle U - T — V, where U € U and V € V.

Remark 2.2. Consider two triangulated subcategories U and V of 7 with Homg (U, V) = 0. Then
any solid diagram

U X v
| ‘ |
| 7 |
\ \
v’ X' V.

in 7 with U,U" € U and V,V’ € V whose rows are distinguished triangles extends uniquely by
dashed arrows to a commutative diagram.

This leads to the following

Proposition 2.3 ([IKM11, Prop. 1.2]). Let (U,V) be a semiorthogonal decomposition of a trian-
gulated category T. Then the inclusion functors iy: U — T and j.: V — T have a respective
right adjoint i*: T — U and left adjoint j*: T — V. They are given by fixing for each X € T a
distinguished triangle
ni'’X — X — j.j'X

in T, whose morphisms are then given by the respective unit and counit. These adjoints induce
triangle equivalences T [V — U and T /U — V, quasi-inverse to the composed canonical functors
U—ST 5T /VandV — T — T /U, respectively. O

Notation 2.4. Adjoint functors L 4 R between categories C and D will be displayed as

D C,
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where the left adjoint L is always the upper arrow, the right adjoint R the lower arrow.

Definition 2.5. Due to Proposition 2.3, two semiorthogonal decompositions (U, V) and (V, W) of a
triangulated category 7 patch together to form a recollement, see [IKM17, Prop. 1.2],

A

R — \\W/

The composed triangle equivalence

L=Ly:U—>T »>W=:Ly(U) =: L(U)
is the left mutation of U through V, its quasi-inverse
R:=Ry: W95 - U=: Ry(‘W) =: R(W)
the right mutation of W through V.

Remark 2.6. In Definition 2.5, the composition U 5 W — 7 is right adjoint to 7 — U, the com-
position W & U — T is left adjointto T — W.

Definition 2.7 ([IKM16, Def. 1.3]). An n-gon of recollements of a triangulated category 7 consists of
n > 2 triangulated subcategories Uy, . .., U, such that (U;, U;.1) is a semiorthogonal decomposition
for all i € Z./nZ.

Prominent examples of triangulated categories, dubbed algebraic by Keller [Kel06, §3.6], are the
stable categories of Frobenius (exact) categories, see [Hap88, §2]. Our main reference on the topic of
exact categories is Biihler’s expository article [Bith10]. We review selected material on these types of

categories. Admissible monics and epics are represented by > and —», respectively.

Proposition 2.8 ([Biih10, Prop. 2.9]). In an exact category, finite direct sums of short exact sequences
are again short exact. In particular, any split short exact sequence is short exact. O

Proposition 2.9 ([Biih10, Prop. 2.12]).
(a) For a square
A5 B

Tl

A~ B

in an exact category, the following statements are equivalent:

(1) The square is a pushout.

(2) The square is bicartesian.
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O

(3) The sequence A ————> B® A’ ——— B’ s short exact.

(4) The square is part of a commutative diagram

A ! B C
‘/j ‘/‘f,
AL s B C.

(b) For a square

A L p

in an exact category, the following statements are equivalent:
(1) The square is a pullback.
(2) The square is bicartesian.
()
(3) The sequence A >L> Bao A’ ﬂ» B’ is short exact.

(4) The square is part of a commutative diagram

K A B
‘/g, ‘/g
K AL p

Lemma 2.10 (Noether lemma, [Biih10, Ex. 3.7]). Any solid commutative diagram

A’ B’ c’
Y
|
|
|
\Z
A B C
|
|
|
¥
A// B// C//

in an exact category with short exact rows and columns can be uniquely completed by a short exact

sequence C' »» C —» C". m|
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Definition 2.11. A subcategory & C & of an exact category is called (fully) exact if it is an exact

category itself, and if the inclusion functor preserves (and reflects) short exact sequences. !

Proposition 2.12 ([Biih10, Ex. 13.5, Prop. 11.3, Cor. 11.4]). The subcategories Proj(&) of projective

objects and Inj(E) of injective objects are fully exact with the split exact structure, where Proj(&E) is

closed under kernels of admissible epics and Inj(E) under cokernels of admissible monics.

Convention 2.13. Let & be an exact category.

(a) If &€ has enough injectives, we fix for any A € & an admissible monic ig: A > I(A) with I(A) €
Inj(&) and a cokernel XA of iy. We choose iy = id4 whenever A € Inj(E).

(b) If & has enough projectives, we fix for any A € & an admissible epic p4: P(A) —> A with P(A) €
Proj(E) and a kernel 1A of ps. We choose p4 = id4 whenever A € Proj(&).

Construction 2.14. Let ¥ be a Frobenius category. Then £ becomes an endo-functor of the stable
category ¥, defined on representatives of morphisms by a commutative diagram

X X [(X) —s =X

T

Y L I(Y) —» XY
in ¥, independent of choices up to isomorphism of functors, see [Hap88, Rem. 2.2]. The dual diagram
makes X~! an endo-functor of #. For any morphism f: X — Y in #, Proposition 2.9.(a) yields a
pushout diagram

X —s I(X) —» =X

.

Y L5 C(f) —» =X

) )

X >r—— IX)eY — C(H).

and a short exact sequence

The object C(f) € ¥ is called a cone of f and the sequence

x —L vy C(f) ——> 3X.

in ¥ a standard triangle. Dually, a cocone C*(f) of f fits into a pullback diagram

Y > Cf(f) —» X

ek

Y > PY) —L» ¥

IBiihler uses the term fully exact for the stronger notion of extension-closedness, see [Bith10, Lem. 10.20].
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and into a short exact sequence

(- »)

C'(f) > XoPY) —» Y. 2.1

Theorem 2.15 ([Hap88, Rem. 2.2, Thm. 2.6]). The stable category of a Frobenius category is tri-
angulated. The suspension functor is ¥ with quasi-inverse X7\, the distinguished triangles are the

candidate triangles isomorphic to standard triangles, see Construction 2.14. m|

Definition 2.16. We call a morphism in a Frobenius category ¥ a quasi-isomorphism if it is an
isomorphism in the stable category ¥ .

Lemma 2.17 ([Hap88, Lem. 2.7]). Any short exact sequence X > Y 55 Z in a Frobenius category

F induces a distinguished triangle X Ly Zin F. In particular, any morphism f in F yields a
distinguished triangle C*(f) — X ER Yin ¥, see (2.1). m|
Proposition 2.18 ([IKM16, Prop. 7.3]). Any exact functor F: F' — F of Frobenius categories pre-

serving projective-injectives induces a triangulated functor F: ' — F of the respective stable cate-

gories. m|
We further specialize to monomorphism categories, which are our objects of study.

Notation 2.19 ([BM24, Def. 3.1], [IKM17, Def 4.1]). Let & be an exact category and / € IN.
(a) Let Mor;(&) denote the category of diagrams of Dynkin type A;;; in &, where Ay, is the linear

quiver

° . . [
0 1 -1

~

with [ arrows. We denote elements of Mor;(E) by

1 -1

0
X=Xa): X0 25 x 25 ... 2 5 x

By Mor;"(E) and Mor;™(E) we denote the subcategories of Mor;(E), where all arrows are admis-

sible or split monics, respectively.

(b) Given an object A e Eandn € {1,...,[+ 1}, we define the object

Ha(A): 0 0 — AL+l Al
of Mor;™(&) by A* := Aforke{l—n+1,...,1}.

Theorem 2.20 ([BM24, Props. 3.5, 3.9, 3.11, Thm. 3.12]). Let & be an exact category.

(a) The category Mor}'(E) is exact with the termwise exact structure.

(b) We have Proj(Mor;(E)) = Mor;™(Proj(&)) and Inj(Mor}"(E)) = Mor;" (Inj(&)) = Mor}"(Inj(E)).
(c) If & has enough projectives resp. injectives, then so has Mor}"(E).

In particular, if ¥ is a Frobenius category, then so is Mor}"(F), and Proj(Mor}"(¥)) = Mor}"(Proj(¥)).
O
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For later reference, we construct sections that witness the injectivity of objects of Mor;"(Inj(&)):

Lemma 2.21. Let & be an exact category, | € N, and I € Mor;n(Inj(S)). For an admissible monic
s: 1 >> X in Mor(E), any left-inverse 0 X0 = 10 of 50 extends to a left-inverse r: X — I of s.

Proof. Write I = (I,¢) and X = (X, @). We may assume that / = 1. Due to Lemma 2.10, the admissible

monic s gives rise to a commutative diagram

Pl Ky

r . YT
/0 . w0 | %l . e
s s 1J
Y

I
I
I
I

v

v

°

—_

of solid and dashed arrows in & with short exact rows and columns. By Proposition 2.12, we have
J' € Inj(&). The dotted arrows are now obtained as follows: The upper row and the right-hand column
split since I, J' € Inj(E). Hence, there are a left-inverse k! of j' and morphisms ¢! and «° such that
Ok + it =idp. Using I° € Inj(&) again, we lift 7* along a to obtain 7: X! — I° with F%a® = /.
Set r! 1= 070 — P01 kB + J1k'BL. Then r := (#°,r'): X — Iis a morphism in Mor}"(E) since
B'a® = 0 and hence r'a® = %7a® = (°/°. Using that k!g8's! = k' j'x! = ', we compute
rlst = O — 0%t o (klﬁlsl) +i'o (kl,Blsl) = 7' o (LOKO +i'k ) O + i
= 00100 + it = OO0k + it = 00500 + k! = Ok0 + Mkt = id ),

as desired. O

Notation 2.22. For a Frobenius category # and / € IN, we denote the stable category of Mor}" () by
M = Mor™ (). It is a triangulated category, see Theorem 2.15.

Construction 2.23 (Projectives and injectives in Mor;*(E)). Let & be an exact category, [ € N, and
X = (X, @) € Mor}"(&). If & has enough projectives or injectives, we construct ix and py based on iy
and p4, where A € &, see Convention 2.13:

.....

Proj(Mor}"(¥)) defined by
pk = (afk_l ---aOpXo a’k_lpxk—l pXk) . Pk = P(XO)GB e @P(Xk) — xk,

(b) Consider ¥ := iyo: X° > I(X") =: I and form a diagram



STRUCTURE OF STABLE MONOMORPHISM CATEGORIES 11

1

X0 2 x! X! 2 x2 X1 2, x x!
0 O O O
1 2 -1 !
s w5 W2 > R w>—— 1
O O O O
YO YO 3 s Yl Yl Yl—l — Yl—l 3 5 Yl
of bicartesian squares with = Tyyk WK s— I(WK) =: I* for k € {1,...,1} and short exact columns,
see Proposition 2.9. Composing horizontal monics to eliminate the columns involving W', ... K W!

yields a short exact sequence X X5 I = Y in Mor () with I € Inj(Mor} (%)) as desired, see Theo-
rem 2.20.

Remark 2.24. Any pushout along an admissible monic in Mor;"(E) for [ € IN yields termwise pushouts
along admissible monics in an exact category &, see Proposition 2.9.(a) and Theorem 2.20.(a). The
obvious dual statement holds for pullbacks along admissible epics. In particular, for any Frobenius
category ¥, the (co)cone of a morphism in Mor}"(¥) yields termwise (co)cones in ¥, see Construc-
tion 2.14 and Theorem 2.20.(b).

3. CONTRACTION AND EXPANSION

In this section, we introduce contraction and expansion functors of stable monomorphism categories.
Their respective kernels and images are the triangulated subcategories, which form various semiorthog-
onal decompositions, see Section 4. We give a convenient representation of their objects up to special
choices of quasi-isomorphisms.

Definition 3.1. Let & be an exact category, / € IN, and s, € {0,...,[} with s < ¢

(a) We define the contraction functor !/l := y}s”] : Mor;"(€) — Mor}",, (&) by sending an object
X = (X, a) € Mor}" (&) to

0 ) sl 41 -1
XOIQ NN ;Xs—laf a Xt+l @ N Xl,

and a morphism (f°,..., f)to (f% ..., £, 4L ). We write y* 1=y 1= 1%,

P =y =y oy T Mot () — Mo (),

[s,s]¢

and y* := ylsc =Y
(b) We define the expansion functor 6!/ := 65“"[]: Mor"(&) — Mor !

1+1—s(©) by sending an object
X = (X,a) € Mor}" (&) to

0 s—1 s -1
}(0>a/_)>a’%)(S _Xq>a_)>w_)X1’

and a morphism (fO,...,fl) to (fo,...,fs, . ..,fs,...,fl), where the X* resp. f* are placed at
positions s, ..., z. We write 6° := 6} := 655’”1]. Note that 65‘”] = idmorn(e)-
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Remark 3.2. Let & be an exact category, / € IN, and s,7 € {0,...,[} with s < 1.

06, =0

TR 5;_1 if s <t.

(a) We havey} oy = yfj oy and ¢,

(b) We have y}s”] =y 00 y?j oy} and 65"'”] = 5;:;;—1 0---0 613:11 o ¢;. These representations

are not unique, see (a).

[s+1,7] ° 5[s,t]
[

(c) We have yf5! o 61" = idygenee, if £ < 1, and y15

[+t—s+1

U5 is fully faithful and ¥t full.

= idmorn(e) 1f s < 1. In particular,

Remark 3.3. Let ¥ be a Frobenius category, / € IN, and s,7 € {0,...,[} with s < r.

[s,2]
I

Theorem 2.20. As such they induce triangulated functors

(a) The functors ¥, and 65”1 from Definition 3.1 are exact functors and preserve projectives, see

Y0 = 0 Mor™ (F) — Mor™,_,, (F) and & := 61T Mor™(F) — Mor™,,, (F)
of stable categories, see Proposition 2.18. We write y* :=y) = zgs’s], Y = XES”]C = ZEOJ_I] o
ZEHI,I]’ZSc - lec - ZES,S] , and és = éls = é[s,s+lj'
(b) Due to Remark 3.2.(c), % | 0 8" = idyom (7 if < 1, and YT 0 611 = idygrm ) if

s < t. In particular, ¢! is fully faithful and y!** full.

Definition 3.4. Let 7 be a Frobenius category, / € IN, and s,¢ € {0, ..., [} with s < 1.

(a) By I'ls4 .= ng’t] we denote the kernel of ZES ‘1 that is, the subcategory of Mor™ () with objects
X, where X* € Proj(F) = Inj(¥) forall k € {0,...,s = 1,t+ 1,...,I}. We set T* := T := T1>*1,

(b) By AlS = AE” I we denote the image of §!**

I—t+s®
By Remark 3.3.(a), both FF”] and AE”] are triangulated subcategories of Mor™ (7), see [NeeOl,
Lem. 2.1.4]

Lemma 3.5. Let ¥ be a Frobenius category and s,t € {0,...,l} with s < t. Then, A s the replete
hull of the subcategory of Mor™ (F') with objects of the form

X0 — o —5 X X — - — X,

The restriction of Y''=1 or, equally, y*'1 to A1 is quasi-inverse to the triangle equivalence
MerlH—t(?:) — Al given by (_S[s’t].

Proof. The first claim holds by definition, the second due to Remarks 3.3.(b) and 3.6. m|

Remark 3.6. Let n: F — G be a natural transformation of functors F,G: A —» B. It H: 8 —
C is another functor, then the whiskering Hn := (H(nx))xea of n on the right by H is a natural
transformation HF — HG. It is an isomorphism if 7 is so. In particular, if F is an equivalence with
quasi-inverse F~land F’ : 8 - A a functor with F'F = idg, then F~' = F'/FF~' ~ F’. So, F’ is
already a quasi-inverse of F.

Lemma 3.7. Let & be an exact category, | € N, and s,t € {0,..., [} with s < t. Given X = (X,a) €
Mor}n(S) with X* € Inj(&) forallk € {0,...,s—1,t+1,...,1}, there is
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(a) a split short exact sequence

0 s=2
I XO )(I_) e )a_) XS—I — XS_I —_— . — XS—I J— It+1 > S een 5 I[
I H O Od ‘ Ias—l ar—lmas—ll a/tma/x—ll O O I
0 . 2 e &7 e o't t a +1 ' o /
X h AN G i BN < BN AN ‘NN ‘<23 IS AN N '
lp lpo pSil l . lpr . . lpt o lpt.ﬂ lpl
X O _ ... O XS Xt pa— Xt+1 _— .. — Xl‘+1

(b) with reverse split short exact sequence

X 0=—--=—=20 XS Xt —s Xl — — xrtl
Ii Iio If—' m| Iif O O If O il Il’
X X0 > g el g s @, T el e @
Lo oo | | L= o]
1 DN G 5 BN oS I 2 R BN

in Mor}(E), where X* e mj@&), I € Inj(Mor;(E)), and X' := 0. The morphism i"*' can be chosen
as an arbitrary right-inverse of p'*!.
In particular, if € is Frobenius, then p and i are quasi-isomorphisms and FES’I] is the replete hull of the

subcategory of Mor™ (&) with objects of the form

00— ... —— 0 X X — Xt — ... = X",

where X'*! € Proj(&) = Inj(&).

Proof.

(a) Due to Proposition 2.9.(a), forming successive pushouts yields a short exact sequence

J X0 5@y L el sl Lyl — xl —  — xs-
I H ‘ Iaxl Iwrl_._asl Iat"_as—l Ial—l_"ax—l
X D UR AN GRS B G NN NN G LN G I AN
l l l . l o o l - l o o l
Y 00— .- —0 XS XIHXH—I)—)"')—)XI
3.1)

in MorX(&). If s = 0, use idyo: X° — X° =: X° for the leftmost pushout. By Theorem 2.20.(b),
J € Inj(Mor;"(&)) and the sequence splits. In particular, X — Y is a quasi-isomorphism if & is
Frobenius, see Lemma 2.17. If ¢ = [, this proves the claim with X = Y and I = J.

Otherwise, for each k € {r + 1,...,1}, the short exact sequence X571 > Xk 5 XK yields Xk e Inj(&)
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such that the admissible monic X"*! >— X splits, which gives rise to a biproduct X* = X"*! @ J* with
J* € Inj(E), see Proposition 2.12. Lemma 3.8 applied to y/%/1(Y) then yields a short exact sequence

J 0 0 0 0 0>— J*2 s oo
. | ] [ [=]= o]
Y 0 — - =—=0 X* X — Xt s X2 s 5 o5 X!
L | | |
5 0 —— ... —— 0 ba Koy X — ¥ —— L fr+l
in Mor}"(&) with J e Inj(Mor;"(&)), see Theorem 2.20.(b). As above, ¥ —» X splits and is a quasi-
isomorphism if & is Frobenius. Due to Lemma 3.9, I := J & J is the kernel of the composition

pX—>»Y>»X

(b) A right-inverse i"*! of p'*! corresponds to a left-inverse #*': X"+ —5 I'*! of o/ ---a*~'. Set
ko= Pl ok for ko€ {s,...,t} and ¥ = idy for k € {0,...,s — 1}. Apply y!% followed by
Lemma 2.21 to define * for k € {t+2,...,1} starting from '+ Then r := (ro, e rl) X —>1Tisa
left-inverse of / > X, which corresponds to the desired right-inverse of p. The claimed bicartesian

squares are due to Proposition 2.9. m|

Lemma 3.8. Let & be an exact category and | € IN. Then any X = (X,a) € Mor" (&) fits into a

termwise split short exact sequence

0 X! X2 X!
I O [} O O
X0 >y xl 2, x2 @ o, X!
B B B
X0 X0 X0 X0
in Mor;n((‘]), where X* is the cokernel ofc?k_1 =k 0l X0 s X"fork e{l,...,k}.

Proof. By assumption, for any k € {1,...,1}, there is gF: X* — X*! such that g*a*~! = idyi-1. In
particular, ¥ := g'--.gF: : X* — X0 satisfies ffaf~! = idyo and B*e*~! = B*~!, which establishes

the vertical split short exact sequences and the lower half of the diagram. Lemma 2.10 applied to

XKoo XM 55 e
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fork € {1,...,1-1} then completes the diagram. The bicartesian squares are due to Proposition 2.9.(b).

[m|

Lemma 3.9. In an exact category, any split short exact sequence A >> B L5 C and short exact se-

i P ) .
quence A’ > C —»> D give rise to a short exact sequence

igil ,
AoA (>—>> B %% p,
where j: C — B is any right-inverse of p.

Proof. Given akernel k: E > B of p’p, Lemma 2.10 yields a commutative diagram

A A—50
Y .

e i q [
v . .

E By p
| F

|

: P

$ . ’
A" sc-—Lwp

of solid and dashed arrows with short exact rows and columns. With ¢ the left-inverse of i correspond-
ing to j, then gkt = gi = id4 and the left column splits. With respect to this splitting, k corresponds to
(i ji’) and the claim follows. O

4. SEMIORTHOGONAL DECOMPOSITIONS

In this section, we establish various semiorthogonal decompositions of stable monomorphism cat-
egories using the subcategories introduced in Section 3. These decompositions form polygons of
recollements.

Proposition 4.1. Let 7 be a Frobenius category, | € N and s € {0,...,1 - 1}. Then Mor™ (F') admits

the semiorthogonal decomposition (F [s+1.0] F[O’S]) as follows:

s+1 as+1 ) s+2
0 0>~ X — X

XO (1/0 ) s~ J/
X0 >
(b) The inclusion TS0 —s Mor™ () has a right adjoint which sends any X € Mor(F) to the

object in the upper row of the diagram in (a).

]

a

(a) Any X = (X,a) € Mor}'(F) fits into a distinguished triangle in Mor™ (¥) represented by the
s+1 s+2

commutative diagram in ¥
-1 XI
! X o’ xSt @ xs+2 - x!
. H

IS]

a

X5 — I(X) = (X)) = ... = I(X*).

a’”
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(c) The inclusion T1%1 — Mor™ (F) has a left adjoint which sends any X € Mor}"(F) to the object

in the lower row of the diagram in (a).

Proof. For condition (a) in Definition 2.1, consider a morphism f: X — Y in Mor}"(¥) with X €
s+ and ¥ e 11951, Due to Lemma 3.7, we may assume that Xk = 0 for k € {0,...,s} and
Y € Proj(F) fork € {s + 1,...,1}. Then f factors as follows:

00— - =—=—— 0> X**! > ... 5 X!
RN
00— - —=—— 0> YVt s ... 5 V!
l | |

0y 5 i Vs Vsl s oo 5 Y

The middle object is projective, see Theorem 2.20.(b), and hence f = 0 in Mor™ (7).
For condition (b) in Definition 2.1, we prove that for any X € Mor;" () the morphism

X 00— —— 0> Xl >3 ... 5 X!
b | |
X X0 5 o s XS s X s s s X!

in Mor} () with X € I's*!) has its cone C := C(f) in I'%*. To this end, we consider the pushout
of f along the admissible monic i := iy: X >= I(X) =: I, where I*¥ = 0 for all k € {0,...,s} and

= s X5t (x5t = I+, see Convention 2.13, Construction 2.23.(b), and Remark 2.24:

i 0:---—O>—>15+1>—>I”2>—>--~>—>Il
1
7 7/ 7 7

% 0 =—— . =0 X”l X2 s s X

f C ‘X0>—>--->——)Xs>—->15+1>915+2>—>~~>——>11
PR P 7

X XO—s oo X XSt s X5*2 5 5 o 5 X!

We postcompose X — C with the quasi-isomorphism C — C from Lemma 3.7.(a) to obtain a distin-

guished triangle

X 0 0>—>XS+1>—>XS+2>—>--->—>X1
bl | |
X X0 X5 Xstlos s xst2 sy L. s X! 4.1)
. | |

X0 X5 — (XY = (X)) = ... = [(X**))

in Mor™,(F) with X € ['s+1 and € € T1%4), The claims on adjoints is due to Proposition 2.3. O
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Corollary 4.2. Let F be a Frobenius category, | € IN, and s € {0, ..., 1}. Given f: X — Y € Mor}(¥)
and two admissible monics i: X* >> 1 and j: Y* > J in F with I,J € Proj(¥), there is a unique

morphism of the form

X X0 XSt —=— ... =1
by T
4 el Yot J— . = J,

in Mor™ (). In particular, f is an isomorphism if f = idy.

Proof. The objects X, ¥ € I'%s~11 appear in the distinguished triangles of Proposition 4.1.(a) applied
to 8(X) with iys = i and 6'(Y) with iys = j. Remark 2.2 yields the claim. o

Combining the particular claims of Lemma 3.7 and Corollary 4.2 yields

Corollary 4.3. Let F be a Frobenius category, | € IN, and s,t € {0, ...,1} with s < t. Then T's!1 C
Mor™ (F) is the replete hull of the subcategory of Mor™ () with ob]ects of the form

00— ... —— 0 X XM (X = - = I(X"). o

Proposition 4.4. Let 7 be a Frobenius category and [ € IN.
(a) Fors,t €(0,...,I-1}with s < t, Mor™ (F) admits the semiorthogonal decomposition (F[S”], A[“‘””])
as follows:
(i) Any X = (X, @) € Mor"(F) fits into a distinguished triangle in Mor™ (F") represented by
the commutative diagram in &

0 0 Y* Y! > P(xt+l) —_— ... — P(Xt+l)
J/ J/ l O O l O ;LPXHI J/
X0 5@y @ st @ s @ T df e @ a2y
LT \
>—> >a_> X5~ lfY oy XH'1 _ . — Xl+1 _ Xt+1 a't! a! Xl.

(ii) The inclusion T —s Mor™ (F) has a right adjoint which sends any X € Mor}(¥) to the
object in the upper row of the diagram in (i).
(iii) For s < t, the inclusion Al — Mor™ (F) has a left adjoint which sends any X € Mor; ()
to the object 6""1y5*=1(X) in the lower row of the diagram in (i).
(b) Fors,t € {l,...,[}with s < t, Mor™ (F) admits the semiorthogonal decomposition (A[Y L1 I“[”])
as follows:
(i) Any X = (X, ) € Mor}n(?~ ) fits into a distinguished triangle in Mor™ (F) represented by

the commutative diagram in



18 J. FRANK AND M. SCHULZE

XO 3 a° 5 ... :akz; Xs—l — Xs—l . — Xs—la;“_)‘leHl :a’Hl; RN ; Xl

H ‘ Ia Ia,_l o H
XO o o a’2 Xs—l o ! XS o o i Xl ot Xt+l attl o Xl
| Lol o) | |
0 ... 0 ys . Yo [(Y) =— .. = I(Y").

(ii) For s < t, the inclusion A% — Mor™ (¥) has a right adjoint which sends any X €
Mor;(F) to the object Syt LX) in the upper row of the diagram in (i).

(iii) The inclusion T151 — Mor™ (F) has a left adjoint which sends any X € Mor;(¥) to the

object in the lower row of the diagram in (i).

Proof.

(a) For condition (a) in Definition 2.1, consider a morphism f: (X,a) — (¥,8) in Mor;"(¥) with
X eIl and Y € A1 1t factors as

P RN I RSN QNG O G NI |
| | e l- |
X0 > @ @ el @ el Lyl ekl 2T e @20 dlT
I I e R I
B P st B s Y! yrt £y PO P

since B¢ = idy« and hence f* = f™*!a’---a* for k € {s, ..., t}. The object in the middle row is projec-
tive since X¥ € Proj(F) fork € {0,...,s = 1,t+ 1,...,1}, see Theorem 2.20.(b), and hence f = 0 in
Mor™ (7).

For condition (b) in Definition 2.1, let X = (X, @) € Mor;"(¥) be arbitrary, and set X = sloi+llylsrx) e
A1 We prove that the morphism

=2 s—1 s t—1 t+1

t
X NN '€ AN e N NN AN ' NN Co AN N
AfJ/ ‘ ‘ ‘ Ia, i .as Iat ‘ ‘
& 0, @2 1@ ] r+1 1! 1
X' — o XS X = ... == X" =X >—>--->—>X

in Mor}"(¥) has its cocone C* := C*(f) in I'ls#1 To this end, we consider the pullback of f along the
admissible epic p := 6[‘”+1](p71x.,1(x)): P — X with P e Mor;"(Proj(¥)) and

pk — ( et lps 1 pXm) Pk P I@P(XHI) %XHI (42)

for all k € {s,...,t + 1}, see Construction 2.23.(a). Due to Remark 2.24, it displays as a termwise
pullback:
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X X0r— oo XS s X5 5 s X X 5 5 X!
/“l 7| 7T AR 4
cr f| POl ... s ps e s s Pl s 5 ... 5 P!
[ Ty T
X X0 s ool X5y X — .. == X ol X s L | X
2 A L7 VA 7
P PO>—s ... psly 5 ps P! ) AR NN

In particular, for each k € {s, ..., ¢}, the square
Ck 3 R Pk Pt+1
o]
Xk ¢ t"'“ka XH—I
is bicartesian and, for k < ¢, so is the left square in the diagram
Ck — Ck+1 — Pt+1
=1 |
Xk 5@y ykr1alaS v

due to Lemma 4.6.(b). Using the right-inverse of P'*! —s P(X"*!) given by the biproduct in (4.2),
Lemma 3.7.(b) yields a quasi-isomorphism C* — C*. By composition we obtain a quasi-isomorphic

cocone of f:

o 0 0 (o C' — PX") = ... = P(X"*)
l | | o I s o [ e ] |
C* PO s ... s psl CS C! p+l s 5 ... 5 pl
| N A AL l
X XO (YO o a,s—2 XS—I a/x—l XS o at—l Xt ot XH-I at+l o a/l—l Xl
Due to Lemma 2.17, this yields a distinguished triangle

C* 0 0 C* C' > PX") = ... = PXX"")

l l l l o . l 5 Jpe l

X XO aO o a/s—2 XS—I as—l XS ot at—l X[ o XH—I at+1 o l Xl
AT T I a
X XO 3 s o Y ; )G 1‘1 s Xt+l . — Xt+l ___ XH—I :‘IHIE ces 5 Xl

in Mor}"(¥) with X = slot+llylsnxy e Als+1 and C* e T'l71. Proposition 2.3 yields the claims on
adjoints.

(b) For condition (a) in Definition 2.1, consider a morphism f: (X,a) — (¥,8) in Mor;"(¥) with
X € A=V and Y e T, 1t factors as
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XO 3 a S ... :(I‘FSE XS—Z ;f:) Xs—l X .. Xt % a' Xt+l :‘ZH N o 5 Xl
lfo J/st J/fsl J/fsl J/fsl J/fwl J/fl
3 lix S . :ﬂX%; Ys—2 g Ys- I — Y5~ 1 .. Ys— lﬁ N lYt+1 B! .. 'Bl : Yl
‘ ‘ ‘ J]le J/Btlmﬁsl ‘
YO ﬁO s—3 Ys—2 2 Ys—l ﬁ.vfl YS ﬁx . ﬂt71 Y[ t Y[+1 ﬂt+l o ﬂ]*l Y[’

since a*~! = idyi-1 and hence f* = g1 g5~ 51 for k € {s, ..., t}. The object in the middle row is
projective since Yk e Proj(¥) forall k € {0,...,s — 1, + 1,...,1}, see Theorem 2.20.(b), and hence
£ = 0in Mor™ ().

For condition (b) in Definition 2.1, let X = (X, @) € Mor["(¥) be arbitrary, and set X := s*~1lyls(X) e
AlS=17 We prove that the morphism

t+1
X0>—>--->—>XS1—XSI——---—XSW oy X’+1>a—>~-->—>Xl

X
fJ/ H ‘ Iasl Ial—]maf—l H
X : s

0>—>--->ﬁ>XS1 o X5 2 ... o X! o X‘+1>ﬂ>--->—>Xl
in Mor™ (%) has its cone C := C(f) in I'ls#1" To this end, we consider the pushout of f along the
admissible monici := iz: X > I(X) := Iwithi* = i* ! forallk € {s, ..., t}, see Construction 2.23.(b).

Due to Remark 2.24, it displays as a termwise pushout:

1 0 >— oo 5! - I’>—>I‘+1>—>-~>—>Il
l
LA G R4 T R R 7
X >—> > X = ES — X > X
| ! T
>—>--->—->Is_1>—>CS>—>--->——>Ct>——>I’+1H--->——>Il
L 1L VAR 7
s Xl s XS s X s X s o X

In partlcular, foreach k € {s, ..., t}, the square

X5~ 1(1/ LT Xk

N

Is—l — Ik 3 s Ck
is bicartesian and, for k > s, so is right square in the diagram

k-1
X?la/: ;Xklja EXk

Lo [ = |

Is—l N s Ck—l N s Ck
due to Proposition 2.9.(a) and Lemma 4.6.(a). We postcompose X — C with the quasi-isomorphism
C — C from Lemma 3.7.(a) and the one from Corollary 4.2 (applied to the identity morphism of
yl+LU(C) and the monics €' > C™*! =: J € Proj(¥) and ix) to obtain a quasi-isomorphic cone of f:
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X X0 a® o a2 xs-1 o’ X o a'! X! a X+ a't! o al! X!
| | o I oo I
C IO S G I ]S_l C* Ct ]H'l SR G N ]l
| o] o] a
o) 0 0 C* C! J J
| ER
¢ 0 0 Cs ¢ > () = - = ().
This yields a distinguished triangle
5 Xo:a K. EXclzxs—l_m_xs 105-a yrel gt e EXl
fl H ‘ Ia,sl Iarl_"asl H
X X0 a° L =2 x5-1 a’! X @ o' X! o X+ a't! L x!
| Ledle o | l
¢ 0 0 s ¢t > () = - = I(C")
in Mor™(F) with X = gls=1yls(x) e Als=14 and C e T, Proposition 2.3 yields the claim on
adjoints. |

Remark 4.5. There is an alternative distinguished triangle in Proposition 4.4.(b): In the proof, we
replace the quasi-isomorphism from Lemma 3.7.(a) by the one obtained from Lemma 3.8 applied to
Y!%(C). This results in the distinguished triangle

X XO A N )L XS_] —_ X‘Y_l — e —= XS—la;ﬂ_lxﬁ'l L “ee H Xl
J/ H ‘ Iasl I(lll__.(lxl H
X DN i S BT N N AN SN AN N2 BN AN N v
b o] =] | l
Y IO N N IS—l Ys . y! byt I(Y[) - . — I(Yt)

in Mor™ (%), where y1*/(g) = i 1un(x,. Thus, the inclusion ISl < Mor™ () has another left adjoint
which sends any X € Mor; (¥) to Y.

Lemma 4.6 ([FS24, Lem. 1.3]). Consider the following commutative diagram in an additive category:
A——B—>C

Pk

A/ r B/ D C/
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(a) If the outer square is a pushout and (b r') : B® A’ — B’ is an epic, then the right square is a
pushout.

(b) If the outer square is a pullback and (Z) : B — C ® B’ is a monic, then the left square is a

pullback. |
Combining Proposition 4.1 and Proposition 4.4 yields

Corollary 4.7. Let ¥ be a Frobenius category and | € Ns,. For each s € {0,...,l — 1}, there is the
following (21 + 4)-gon of recollements in Mor™ (F):

r[O,s] A[k,k+s+1] r[k+l,k+s+l] r[O,l—s—l] A[k,k+l—s] r[k+1,k+l—s]

-~

fork=0,...,1-5-1 fork=0,...,s
A[O,s+1] e 5 F[k,kﬂ] 5 A[k,k+s+1] > F[k+1,k+s+1] e > F[Z—s,l]
v N
0.1 l0.-s-1]
\ r[s+1,l] “« . =< A[k+1,k+l—s+1] < r[k+l,k+l—s] <~ A[k,k+l—s] “— < A[O,l—s] //
Iflis odd and s = % it is invariant under index shift by | + 2 and reduces to the (I + 2)-gon

F[O,s] A[k,k+s+1] F[k+1’k+s+“‘

fork=0,..,s

5. MUTATION AND SUSPENSION

In this section, we explicitly describe the mutations occurring in the polygon of recollements from
Corollary 4.7. We identify the subcategories from Section 3 with smaller stable monomorphism cat-
egories using a further type of expansion functors. Under these identifications, certain mutations
become the identity functor, while the others agree with one particular, non-trivial auto-equivalence.

We show that its (/ + 2)nd power coincides with the square of the suspension functor.

Construction 5.1 (Mutations). The adjoints obtained in Propositions 4.1 and 4.4 combined with the
description of T''>/ in Corollary 4.3 allow us to explicate the mutations occurring in the polygon from
Corollary 4.7, see Definition 2.5:

(a) Due to Propositions 4.4.(b).(iii) and 4.4.(a).(ii), the mutations Lys+11 and Ris+1) are given by

rls: ---:O>—>XS>—>XS+1>—>--->—>X’>b‘—t>I(X’):I(X‘):---
LA[.wmlz H l m] l m| i l o l l
N CRE| I—) S RN A1 RN (NI L 3 [ Gab gy
ls: =0 Y > Y s ... > ¥V > PXT) = P(X) — ...
R N I
PISFLrl e 0 = 0 > X s o s XT s XL iy —

(b) Due to Propositions 4.4.(a).(iii) and 4.4.(b).(ii), the mutations Lyis+1.10 and Rpis+1.0 are
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Als] sy XS s XS — X — ... = X’ > X s X2 5 5 ...
Lifs+1, l = TRF[.H—],{]
A[x+1,l+1] NN XS—] - X5 > Xl‘+1 —_— .. — Xt+1 — Xt+1 — Xt+2 > .

(c) Due to Propositions 4.1.(c) and 4.4.(b).(ii), the mutations Lyis+1.1 and Rpis+1. are

Al X0 s oo X571 5 X8 X X
Liis+1,0 l ~ TRF[.HI,/J
F[O’S] XO 5 e > Xs—l - X5 > I(Xs) — .. — I(X‘Y),

where Rpis-14 is given by 151 o yls+1/1,

(d) Due to Propositions 4.4.(a).(iii) and 4.1.(b), the mutations Lpo,s-11 and Rpos-1 are

rts 0>> - >>0>> X5 > . >> X!
Lio,s-11 l ~ TRF[O,A-A]
Al0-s] X = ... =X =X »> - X,

where Lpo.-1) is given by 6101 o 410:s=11,

We use the above mutations to identify the subcategory I''") of Mor™ ,(F) with Mor™,_ (F):

Construction 5.2 (The expansion functors é[“"’]f). Let ¥ be a Frobenius category, [ € IN, and s, ¢ €
{0,...,[} with s < 1.

(a) We pre- and postcompose the left mutation Lpi+11 from Construction 5.1.(c) with the triangle
equivalence from Lemma 3.5 given by (_Sy’” and the inclusion T'*! ¢ Mor™ (F) to define a fully
faithful triangle functor 11 := §l%";

-7 sl l
Mormt(g_-) = Al

=3
1o Mor™ (%),

Z[H 1.1

[t+1,1]
1

given by 8l o Y11 Explicitly, it sends an object X € Mor™(F) to

whose quasi-inverse on I'%l is the restriction of y , since the quasi-inverse Rpu+1.1 Of Lpp+1y is

X0 e X! I(X") ce I(X").
(b) We pre- and postcompose the right mutation Rpo.s-11 from Construction 5.1.(d) with the triangle
equivalence from Lemma 3.5 given by 6/**) and the inclusion I'5) ¢ Mor™(¥) to define a fully
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faithful triangle functor §'/I° 6[s o
B
’/;[o,s] 051 Rrios l Thss
Mor™, (F) —=—— A0Sl —— 5 sl e Mor™ (),

Z[(),s—l]

[0,s—1]

whose quasi-inverse on I'™/l is the restriction of Y , since the quasi-inverse Lro.s-11 of Rpio.s-11 18

given by 1% o 1%+~ Explicitly, it sends an object X € Mor}" (F) to
0 .. 0 X0 e X,

Combining (a) and (b), we define the fully faithful triangle functor

6[3‘ t° é‘[s t]¢ = él[‘t’l]c ° ég(}f]c Mormt_s(y:) SN Morml(T)

=t=s
with image T'". Explicitly, it sends an object X € Mor™ ((F) to

0= - =0>> X" >> --. > X% > [(X"%) = .. = [(X"¥).

Its quasi-inverse on I''! is the restriction of y!*/I° = ZEO’S_” o 15”1’”, see Definition 3.1.(a). We set

6% = olssl,

Construction 5.3 (Abstract mutations). Let & be a Frobenius category, [ € IN, and s,7 € {0,...,[}
with s < 7. We use the equivalences Mor™,_, (F) — Al and Mor™ = T15/ given by sl
and 611" from Remark 3.3.(a) and Construction 5.2, respectively, as identifications. In this way, we
realize the mutations in Construction 5.1 as triangulated auto-equivalences of stable monomorphism
categories. While the mutations in (b), (c), and (d) become identity functors, Construction 5.1.(a)

yields a non-trivial auto-equivalence:

Ly[s+11
rts ~ [ls+1e+1]

Ry[s+1]

Mor™ (F)

6[v+l 1+11¢

Given X, Y € Mor}? (), it is determined by the diagram
oly=Xx X0 X s s XL p

lulu a | e )

X =Y 0> — Y0 s ... > yr=s=l 5y yt=s
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of bicartesian squares in 7 with i = ixi-s to define ® and p = pyrs to define @~

Remark 5.4. Let ¥ be a Frobenius category and [ € IN. Using the left adjoint from Remark 4.5 to de-
fine the left mutation L(s:+1; in Construction 5.1.(a), Construction 5.3 yields a functor ®: Mor™ [(F) -
Mor™ (), isomorphic to ©, determined by the diagram

&ly=x Xx° X! x2S 1xh

wo [ s 8 [ o]

OX=Y IX)>> Y > . ...>5 Yl sV

of bicartesian squares in . For any object X € Mor; (), ® and O are related by OX = 0X @
(X)), see (3.1).

Proposition 5.5. For any Frobenius category F and all | € IN, there is an isomorphism @'*? = 2 of
endofunctors on Mor™ (F), where L is the suspension functor.

Proof. We prove instead that ®+% = X2, see Remark 5.4. For an arbitrary X € Mor; (), set X’é = XK
for k € {0,...,1}. The (I + 2)-fold application of @, is given by a diagram
0 1 ’) .
Xy — X, > Xy > > X; >—> J
_k
' o m|
I:xgEl I m I I mi I i\X,\s
I — XV > X > - X s X >
< <
i mi m]
\\:l IIX(]) O I I O I O I ;,\N
L > X) > > X2 > X s X0 > )

‘\\J.' ?D ¥|:| I o I‘\\\J.

) : - (5.1
< <
. Jole[o] R
N i N
L[> X0 > X > X > XD > - > !
SN I R A P TN
ERE iy 3
L1 > X?+1 > Xil+1 > X12+1 T le+1 >
_K
\\)I Ii’(?nD I O I ] O I O I
Ino > X)) > X\, > > X > X[,

of bicartesian squares in F, where J/ := I(Xj.), [ o= I(X?) and X; = ©/X, for j € {0,...,1 +2}.
Consider the following objects of Mor}"(F):

. 1 -1 0
Y. X X Xy
I: Il 12 . Il+l,

J: J! J? JHL
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Note that I = I(X) and J = I(Y) and that the respective morphisms X — [ and ¥ — J defined by (5.1)
agree with iy and iy, respectively, see Construction 2.23.(b). Using Lemma 5.6, (5.1) yields short
exact sequences
ix
X r— I(X)® w1 (Jo) — ¥,
iy
Y — I(Y) ® p11(Ij32) — (CIED'¢
in Mor}"(¥), where * denotes unspecified morphisms. As a consequence, we obtain isomorphisms
Y = £X and ©'"2X = TY = ¥2X in Mor™(¥), functorial in X, see Construction 2.14. m]
Lemma 5.6. In an exact category &, consider any diagram
A A L A

Ii o I o I

B>L>B’>L>B”

Ij! D Ij/l
C/ 3 C,; C//

of bicartesian squares gives rise to a short exact sequence

() ew

A>—A"®B ———» B”

ids 0
a j
( ) > e

j i <j// i’ C’)

A/ 3 3 AII @ Cl N CN

-

in Mor('(&).

Proof. The horizontal short exact sequences in & arise from Proposition 2.9.(a), since concatenation
preserves bicartesian squares due to the pasting laws, see [Mac98, Ex. I11.4.8]. The middle morphism

is an admissible monic due to Proposition 2.8. Commutativity can be checked easily. O

6. INFINITE ADJOINT CHAINS

In this section, we establish adjunctions between the contraction and expansion functors from Sec-
tions 3 and 5. In order to form infinite adjoint chains, we introduce two further types of contraction
functors. The triangles realizing the semiorthogonal decompositions in Section 4 can be expressed in

terms of the constructed functors.
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Lemma 6.1. For any Frobenius category F, | € N, and s,t € {0,...,I} with s < t, there are the

following pairs of adjoint functors:

(a) ( Ls.t=1] 6[”]) between the categories Mor™,  (F) and Mor™ (F),
(b) ( glsA, [”m) between the categories Mor™ (¥) and Mor™, .. (F),
(c) ( (0] 510117 ) between the categories Mor™ | (F) and Mor™ (%),
(d) (6[”1 A 10, S]) between the categories Mor™ (¥) and Mor™,_ __ (F).

Proof. For (a) and (b), note that the left adjoint of the embedding Alsth s Mor™ (¥) is given by
8191 o y191=11 "the right adjoint by 611 0 15111 see Proposition 4.4.(a).(iii) and (b).(ii). Together with
the equivalence from Lemma 3.5 and its quasi-inverse, they fit in commutative diagrams of adjoint
functors

Z[x.lflj

m
/\/_\

Mor™, ., (F) —— A ——— Mor™(F),

6[5,!]

slsl

— . >
Mor™,_,, (F) —— A8 ——— Mor™ ().

s+l

By composition, this yields the desired pairs of adjoint functors. For (c) and (d), note that the left
adjoint of I'%~11 < Mor™ (¥) is given by 5%~ o 1"l the right adjoint of ['**!1 — Mor™(¥)
by §ls*LI° o 41051 see Proposition 4.1.(b) and (c) and Construction 5.2. We obtain the following
commutative diagrams of adjoint functors, which yield the claim by composition:

Z[t,l]
- é[O,t—HCOX[tJ]
O~ PN
MZ_](T) —— el Merl(?)
é[(l,t—l]”
é[.m,z]”

Mor™,_ (%) —= bt § Mor™ (F)
\_/

= 5[v+l ¢ OZ[0 K

Z[O’S]
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We need two more functors to form an infinite adjoint chain:

Construction 6.2 (The contraction functors #1541 and 7). Let # be a Frobenius category, [ € IN
and s,t € {0,...,[} with s < 1.

(a) Postcomposing the left adjoint of '] < Mor™ ,(F), see Proposition 4.4.(b).(iii), with the trian-

gle functor y!*1" restricted to I'*/], see Construction 5.2, yields a triangle functor $/*1° := $1*":
iy’r]c
//// Z[S’[JC \\\\
7 N
LT 2 /\ N

Mor™, () ——=— T ———— Mor™ (%),

sls€

It sends an object X € Mor}"(F) to Y € Mor;” () given by the following commutative diagram:

Xl s XS5 .05 X!
lm l o o l
0>—> Y0 s ... > yI=8

~ls,8]¢

Wesety' =3 =%,
(b) Postcomposing the right adjoint of I'**) < Mor™ (), see Proposition 4.4.(a).(ii), with the trian-

gle functor Y1 restricted to I'™1, see Construction 5.2, yields a triangle functor 71" := ﬁs”]c:

5[-?,/]C

Mor™,_ (F) ———— ¥ ——— Mor™ (%),

"\\k/ \_//

It sends an object X € Mor}"(F) to Y € Mor;” (F) given by the following commutative diagram:
Y0 > o> VTS > P(XM

lo o] o |

X5 > oo X s XTI
v[s,s]¢

We set ¥ := ilsc =%,

Lemma 6.3. For any Frobenius category ¥, 1 € N and s,t € {0,...,1} with s < t, there are pairs of

adjoint functors

(a) (ﬁmr, QE’;]C) between the categories Mor™,_ (¥) and Mor™ (F),

(b) (é}i’?v, ﬁs’”g) between the categories Mor™ () and Mor™,_ (F).

Proof. This is immediate from Construction 6.2. |

Lemma 6.4. For any Frobenius category ¥, 1 € N and s,t € {1,...,1 — 1} with s < t, there are the

pairs of adjoint functors
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(a) (Q}:l”_uc 0@ !, y%s’tllr) between the categories Mor™,_ () and Mor™ (F),
(b) (igmr, (5&?1’”1]6 o @) between the categories Mor™ () and Mor™,_ (F).
Proof. Due to Construction 5.3 and Remark 2.6, we have the following commutative diagrams of

adjoint functors, see Construction 5.2:

5[5+1,t+1]""

Mormt_s(gr) = N F[s—l,t—l]

@71
. o " S 4
Mor™, (F) ————— Il &5 Mor™ (%),
Z[s,r]"
i[s,f]‘
i[s,t]C
Xls,lJC

/N\
Mor™, () ————— sl e Mor™, (7).

6[_”](:

Mormt—s(?') _ N r[s+1,t+1]

6[s+l,t+1]"‘

Combining Lemmas 6.1, 6.3 and 6.4 we obtain
Theorem 6.5. Let  be a Frobenius category ¥, 1 € N, and s,t € {0,...,[} with s < t. There is the
following infinite adjoint chain:
Ce 4 @22 slimsm L2 g2 @glimsi-lI | slimsd-11 @l glims+ L | sli-s+L0
G0t g gy lsm =] slsmtal o lsd] y glsart] o lslael] Ly li=resi]
3 é[l,l—t+s]"‘® g @—li[l,l—ms]c 3 é[2,1—1+s+1]°‘®2 3 @—21[2,1—t+s+1]c q...

4 é[O,l—t+s—l]C 5 i[O,l—Hs—l]‘
O

Using Corollary 4.2 and the functors from Constructions 5.2 and 6.2, we can interpret the distinguished

triangles in Propositions 4.1 and 4.4 in the language of Proposition 2.3:
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Corollary 6.6. Let F be a Frobenius category, | € IN and s,t € {0,...
Mor™ (F) fits into distinguished triangles as follows:

(a) For s < I, we have

é[”l’l]cz[o’S](X) 0 _ ...

| |

X X0

L]

5[0 s]‘z [s+1, l](X) XO
(b) Fort <1, we have
S (X)) 0 =— .-
X
6[S t+1] [s t](X) XO
where Y' is defined by

(1’

(c¢) For0 < s, we have

(lo

é[s—l,t]z[s,t] (X) XO

1

X NN

l

SN (XY 0 =—= ---

— () Xv+1 o Xc+2

|

>—>«~«>—>X’

l
NCANSUSIN AN RSN

a’

NN X3+1 g:] Xs+2

||

2 (X = I(X°)

‘ Ias—]

s+2

]

iyt

Iat—lmax—l

Ay with s <t Any X €

->—>Xl

N
]

= I(XY).

=0 Ys Y >— I(Y")
l O O l l
N B G N N AN G
T
. gS_J) Xs—l —> Xt+1 - - Xt+l — Xt+l
Y! s P(XH—I)
l O lpxwl
X' >%s X+,
;‘:) Xs—l — Xs—l - .. = Xs—l NN Xt+l

;I:) Xs—l ;g XS s a* S ... :Qtil; X' >%s o Xl‘+l
| oo =] |
=0 Y Y > 1(vh

7. DUALIZED HOM-FUNCTORS

t+1

L= I(YY).

In this section, we review the construction of Bondal and Kapranov to lift representations of cohomo-

logical functors from semiorthogonal decompositions. Based on the decompositions from Section 4,

we lift representations of dualized hom-functors from an algebraic triangulated category to the larger

stable monomorphism categories.

Notation 7.1. Let 7 be a category, linear over a field K, and denote the category of K-vector spaces

by Vect.
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(a) For objects X, Y € 7, we abbreviate
hy := h;C := Homg(—, X), K% := hf](- := Homg(X, —), and hiﬁ := Homg (X, Y).

(b) Consider a contravariant linear functor #: 7 — Vect, an object X € 7, and the set Nat(hy, h) of

natural transformations. The Yoneda lemma yields a bijection

Nat(hy, h) «—— h(X),
n —— nx(idy) =: ¢,
(h}y( > f e h(f)e) e h(Y)) yer € e
Note that any such natural transformation is automatically (component-wise) linear.

(c) We abbreviate (-)* := Homg(—, K). Given a natural transformation ny : h(; - (h§)* of con-

~ *
travariant functors 7~ — Vect, where X, X € 7, we denote ey := ¢, € (hﬁ) , see (b).

We include the following statement for lack of reference:

Lemma 7.2. Let T be a triangulated category, linear over a field. Suppose that there are isomor-
phisms of functors

nx: h; = (h;(.)* and ny: h; =~ (h;)*,
where X,Y,X,Y € T. Then each f € Homs(X,Y) defines a unique f € Homg(X,Y) such that

ex(— o f) = ey(f o =) on Homs (Y, X), see Notation 7.1.(c). This assignment is compatible with
compositions.

Proof. By the Yoneda lemma, any morphism f € Homg (X, Y) corresponds to a unique morphism
f € Homs(X, ¥) via the following commutative diagram of natural transformations:

W, —Z2—— (hf)"  idg e————— ex
sl ]

2

W, ——=—— ()" [ ex(fo-)=ex(=of)

This yields the first claim. For the second, consider another natural transformation 7z : h(z[ = (hg)*,
where Z,Z € 7, g € Homs(Y,Z), and § € Homg(Y,Z) such that ey(— o g) = ez(g o —). Then

ex(—o fg)=ey(fo—og)=ez(3f o-) and hence f = gj‘ by uniqueness. O

We review the construction of Bondal and Kapranov from the proofs of [BK89, Thm. 2.10, Prop. 3.8],
which is explicitly used for the main result of this section.

Theorem 7.3. Let T be a triangulated category, linear over a field, with a semiorthogonal decom-
position (U,V). If all contravariant linear cohomological functors U — Vect and V — Vect are

representable, then so are all such functors 7~ — Vect.

Proof. Leth: T — Vect be a contravariant linear cohomological functor. We proceed in several steps.
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(1) By assumption, there are objects U € U, V,V’ € V, and isomorphisms of functors
Y- hg’ =hly, nV:hY =hly, and  6:hy =hY.

Set eq; := e, u and e := e,v, see Notation 7.1.(b).

1 n
(2) Letu:=e¢eg e hg’, and define v € h“;, by the commutative square

A > hY idy F-—mmmm—- > v,
< lnv 1 { (1.1)
WOy —2 s wv) eu —— h(u)(eg)) = h(v)(ew)

(3) Complete the morphism defined by u# and —v to a distinguished triangle in 7~ as follows:
< M )
) o pa)
V — UV — X (7.2)

It defines a homotopy cartesian square, which fits into a morphism

v

v 14 1%
lu O lq (73)
V-0 L5 X

of distinguished triangles in 7, see [NeeO1, Lem. 1.4.4]. In the sequel, we establish an isomorphism

of functors h?; = h.

(4) We have isomorphisms of functors
U. U ~ U V.V, V
hy:hg =hg and hj:hg =hg. (7.4)
For hff this is immediate from (7.3) since 4V is homological for all U € U and h% = (. For each

V € Vand f € hY, the naturality of 6 and the bifunctoriality of Homg-(—, —) give rise to a commutative

diagram

hy, —=— h{, «— hy, idy/ u idy
b bkl
v o gy My

hV’ = h[j hV’ f MOf f,

by which /Y = 6|y is an isomorphism. Applying the homological functor 4" to (7.3) yields a mor-
phism
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% v Wy
hY,, n, n
Elhx lh,‘;
hV
P
hy,, hY, hY

of long exact sequences of vector spaces. By the five lemma, hg’ is an isomorphism as well.

(5) Combining (1) and (4), we obtain the following isomorphisms of functors:

----------- > hly

N AANZE

ENZANZ

(6) To prepare for the next step, we show that
h(u) o pg =pp o h. (7.7)

Given f € hg, we use (7.4) to obtain a (unique) r € hg such that f = hg (r) and a (unique) s € h“;'
such that pru = hgi(( )= h(‘]/'(s) =gs € h}?. Since homotopy cartesian squares are weak pullbacks, we
obtain a w € A, such that

T
lu l - l 7.8)

f

commutes. This yields

(1.5)

hu) (% (f)) = hw) (oY (1)) "= i) (n}j( )) "2 hw) (hr)ew)) = hru)(ew)
= h(uw)(ear) = how) (h)ear) = hw) (H)(ew)) = h(w)(e)

2 e "= o = o (0] ) = 7. (150)
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(7) To obtain a natural transformation 2y — h on all of 7, we apply the cohomological functors

hg and h to the distinguished triangle (7.2). By (6) and the naturality of p”: h?{ — h|q applied to
—v: V' — V, we have a commutative square

- _ (h‘i htv) ,
hg @ h)Y( ——r X h}Y{

<PZ71 0 > lg o lz
4% v
0 ry (h(u) h(—v))

hO) ® h(V) —— (V).

By Lemma 7.4 for & = Vect and the five lemma, we then obtain an isomorphism of long exact

sequences of vector spaces
P
()
h . . (h“. —hv_)
X hg @ h‘.{ X X
X X X

' U
Ny | = h(p) <pU ) lz Pvl
¢ AN (hwy  -hw)

X) ———— nO)oh(V) ——

X
h)?

w— ()

q
[ :
" (h(p)(e)) _ (e«u) ’
h(g)(e) ey
(7.9)

which involves a (non-unique) dashed morphism defining an element e := ngz(idy) € h(X). This
extends to a natural transformation 5: hg — h, see Notation 7.1.(b).

(8) The restrictions 7|¢; and 1| are isomorphisms: Indeed, given U € U and f € hg ,weuse (7.4) to
obtain a (unique) f € hlf such that f = h[l,]( f) = pf. This yields

() "= h(e) = k(D hp)e) B (e "E g4 E ol (1) = o).

Hence, 5l = pY is an isomorphism, see (5). The proof of 54 = p" is analogous.

(9) It remains to be seen that ;7 is an isomorphism. To this end, place an arbitrary object X € 7~ into
a distinguished triangle U — X — V with U € U and V € V, see Definition 2.1.(b). Applying the
natural transformation 7 yields a morphism of long exact sequences of vector spaces

—— hg(V) — hg(X) — hg(U) —> -+

s W(V) — h(X) —> h(U) —> -+

’
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with isomorphisms as indicated due to (8). By the five lemma, 1y is an isomorphism. m|

Lemma 7.4. Let E be an exact category with Proj(&) = &, or, equivalently, Inj(E) = &. Then any solid

commutative diagram over & with exact rows as below can be completed by a (non-unique) dashed

N

4

morphism:

a

Qe---

With an additional hypothesis, a modification of the proof of Theorem 7.3 yields a refined result:

Theorem 7.5. Let T be a triangulated category, linear over a field, with semiorthogonal decompo-
sitions (U, V) and (V,V*4). A contravariant linear cohomological functor h: T~ — Vect is repre-
sentable if hlqy and hly are so.

Proof. We only describe the changes to the proof of Theorem 7.3 to eliminate 6 in step (1). We pick a
distinguished triangle V/ — U — V+ with V’ € V and V* € V*. In step (2), this u is used instead
of ey to define v. In step (3), we extend the diagram (7.3) to

v Vi ——V
u O lq
v U p X’v (710)
|
l
|
N
Vi —— v+

with columns distinguished triangles, see [NeeOl, Lem. 1.4.4]. In step (4), the argument for h;l,’ then

also applies to h;v. From step (5) onward, the proof remains unchanged. m|

The previous construction is now applied to dualized hom-functors, see [BK89, Prop. 3.8]:

Corollary 7.6. Let T be a triangulated category, linear over a field, with semiorthogonal decom-
positions (U, U), (U,V), and (V,V*). Given an object X € T, consider distinguished triangles
U XD Uand U - X 5 Vwith*U € U, U, U’ € U, and V € V. Then the funcior (kX)" is
representable if the functors (h%)* and (h(‘(,)* are so.

Proof. We apply Theorem 7.5 to h := (hX)". Noti: that hﬁl?: hY, = kY and hy,: hY, = h}, are
isomorphisms of functors. By hypothesis, there are U € U, V € <V, and isomorphisms of functors

n: hg = (hY)" and ny: h(‘;’ = (hX/)* By composition, we obtain isomorphisms of functors
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id[/ «— ey = ey (—oty)

ey(—oty)=ey «—> idy.

This shows that /| and Al are representable and the claim follows from Theorem 7.5.

We apply the preceeding construction to prove Theorem E from the introduction:

(7.11)

Theorem 7.7. Let & be a Frobenius category, linear over field, | € N, and (X,a) € Mor}"(F).

Consider two diagrams

x0.0 a0 0.1 a%! ¥0.2 202 2013
O ,301 O ﬁoz O -
0 Xl,l al! Xl’z al’ a3
o g2 0O O
00— X322 » & a?3
o O

0> —> -

0,/-2

XO,Z—Z :‘1’ S XO,

ﬁO,I—Z O

1,12

0,/-1

Xl,l—2 :a’ 5 Xl,l—l 3 5

ﬁl,I—Z [m}

2,1-2

X2,l—2 :‘Y’ s X2,

ﬁZ,l—Z O

0 >— X

-1 w0
ﬁO,Fl O ﬁO,l

al,lfl Xl,l
ﬁl,l*l 0O ﬂl,l
-1 et x21
ﬁZ,l—l O ﬁZ,/
ﬂl*Z,I*l

| ﬂl—Z,l
-1 @M 1

O ﬂl—l,l

/

(7.12)
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20,0 20,1 20,2 20,3 20,/-1
500 _P 501 _# 02 _F P 0.2 B B §0.-1 P g0l
O G O 2 O 0 %2 0 G%-1 0 &0/
A1l 5 B2 BlLI-3 Bli-2 pli-1
10 gL P 512 _P B g2 P -t A g
O a2 O O G2 0 G100 Gl
72,2 B3 B2 p-1
/! , g22 P B g2 P -0 BT o
O a2 g a1 g 521 (7.13)
P .
~1-2,1-1
] 0 G2
ﬁl 1,-1
-2 5 Fl-1I-1 -1
O G-

-1 s Kbl
of bicartesian squares in F, where (X%, 0% = (X, ) and I* € Inj(F) for k € {0,...,1 —1}. Set
X, @) := (X%}, a*h). Suppose that there are isomorphisms of functors

M i\ *
W= s W = ()

where 0 < i < j < I, such that ey, (— 0[3’?1) = eyitl (%o —) on Hom (X7, X)) for all

0 <i< j<| see Notation 7.1.(c). Then there exists an isomorphism of functors
Mo (X N
e W= (i)

such that ex (( 0,y B [30”)) = exu () for all y € Homg(X", X').

IZ

n

Proof. The claim is trivial for [ = 0. For [ > 0, we proceed as in Theorem 7.5 and Corollary 7.6 with
the notation used there. To this end, we set

= (RS) S =T, =AY =T and vt = T, (7.14)

see Propositions 4.1 and 4.4. Contracting the (/ — 1)st column and the /th row of both (7.12) and (7.13)
establishes the given setup for Y~1(X) € M;_; and y"l(X) =y (X), see Lemma 7.2. By induction, we

(hy (X)) such that

obtain an isomorphism of functors 7,i-1.x,: M f (X)

ey100 (0., 0,y B2 BO)) = ey (V) (7.15)

for all ¢ € Homg(X'~!, X'=1). To process Corollary 7.6, consider the distinguished triangles
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Ly 0 0 —— Y- »— pxh
j/ I/ ) leI
X D NN N o SRR S BN N (7.16)
tu (1’171
0 . o o3 0 @l ;
U XV — o — X — X X',
U’ D NN N IR o x/-1
al*l
X XO a° a3 Xl—2 a2 Xl—l a Xl (717)
Vv 0 0 0 >— XM

in M;, see Propositions 4.4.(a).(i) and 4.4.(b).(i).
To represent (h%)* and hence hl|q, we use the equivalence U — M,_;, given by the restriction of

11—1, see Lemma 3.5, and (7.11): Set

_-7 hl(LI cu
Uu -7
7] _ ~ 1 *
e = (ng;)
hg =====5 o > (hg)" idg «——— eu(=oty) =eyx oy
b F = (7.18)
Yl ( R ) :
Y1) = Yy
‘ -1 ‘
M -1 DI P Ot 0N
Mo ° X = My ) ox s idy, €y-1(x)s

of isomorphisms of functors. To represent (h‘q’,) and hence hly, we use the equivalence V S Mo,

given by the restriction of ¥, see Construction 5.2, and (7.11): Set

V:O0 0 0 — X
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Since le(V) = X" and le(V) = X!, we obtain a commutative diagram

hly ey
() = T
() e-mZnT2RY oy =em(—on) —— idy
(Zlc)* = EJ/Z]C (719)
ic * [ (V)
hy L(V) > _______ hzc(~
( (V) = YEW)
* c M oyt H c .

of isomorphisms of functors. As in the proof of Theorem 7.5, we consider the distinguished triangle

14 0 0 0 — X!
a Lo
0 g0, @ o @ g0 @G el (7.20)
T
v ORISR (NS N 0 GO

in M;, see Proposition 4.1.(a).
Finally, we show that X results from the construction in Theorem 7.3: To this end, we compute

v € Homy, (V’, V) by combining (7.18) and (7.19), see (7.1):

h(0) e h(V")

113
—_—
=
S
~—
*
—

)

R
IR
3

=| (1) (sz)* ~

onl-1
o (10 ? g (m’*'m)* __________ > (nY
Y& = )
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ey oY > (e 0y ) (o o)

_ ~_
s M T~
//// \$ —

T -1 -1 T

idg ¢-—-------5 > eyi-1(x) © F-=> (e oY) (wo—oty) «--» ga-l=v

I @ :[
id e -1 ~I-1
ldyl(X) Cyl-i(xy F———————- > exll (0/ o —) >

The correspondence (1) holds since zH(tU) = id),l—l(X), see (7.16). To see (2), note that a gen-
eral element of h“;/ is of the form (0,...,0,y), where ¥ € Homf(X”, f(l‘l). Using the hypothesis

exi-1 (— 0,81‘1”) = eyu (d/"l” o —), we compute

exii (% ) zlt (m)) = eyl (%E) = ey (JW)
(1.15)

=" ey1(x) ((0, ...,0, (ﬁﬁl_lvlﬁl—ll .. .ﬁO,l))

Z:;Q (eyi o ¥™) (” °(0,....0,¢) 0 ZV) :

All other correspondences are obvious or due to the diagram’s commutativity.
We put u, v, and X in a commutative square

e <
(@)

7|
/

S e——— <

() o

in Mor}"(F). It yields a (termwise) short exact sequence V—"5UeV-—»Xin Mor} (%),
where p = (idg,...,idg-1,@ ) and g = (0,...,0, idg). The corresponding distinguished trian-
gle, see Lemma 2.17, matches (7.2). Therefore, Theorem 7.3 yields an isomorphism of functors
nx :=n: h/;(’ =  defined by ey := e € h(X), see step (7) of the proof.
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It remains to verify that ex ((0, oL 0,y Bl -ﬁo”)) = exu () for all y € Homge (X", X'):

ex ((O,...,0,!//[3]_1’1“-[30’1)) — ¢ (C[O (0,...,O,I/Iﬂl_1’l"'ﬁ0’1))

"=V hig)e) (0. 0.y BT p00))
) (7. 17)

(1.9)

=" ey ((0,...,0,y g1 - O v (0,09 oty)
(729) (eXu o ch) ((0, ..., 0, lﬂ)) = exli (J) O

It remains to construct a diagram of the form (7.13), suitable for Theorem 7.7:

Proposition 7.8. Let ¥ be a Frobenius category, linear over a field, such that ¥ is hom-finite. Given
any diagram in & of the form (7.12), suppose that any object X € F in the diagram admits an
isomorphism of functors nx: hg = (hx)* of contravariant functors ¥ — Vect, where X € F. Then
any diagram in F of the form (7.13) with exo,; (— o W) = ex0,+1 ([% o —) on Homz(XO’jH,f(o’j)

forall j €{0,...,1— 1} meets the requirements stated in Theorem 7.7.

Proof. Using the notation from (7.12), for each i, j € {0,...,[} with i < j, there is an isomorphism
of functors fyi,: hygi; = (hxl"’) defining éyi; := €h; € (h;j) where X%/ € ¥, and morphisms

&b Xt — X and B2 X — X5+ in F such that

o oxii (0 at) = oyism (/? o —> on Homg (X1, £/ for all 0 < i < j < 1,

o 2xi (=0 = exur; (@ 0 —) on Homg (X7, £)) forall 0 < i < j < 1.

For j € {0,...,1}, set X%/ := X%/ and %/ := %/ if j < I to construct (7.13) by pushouts and a choice

of admissible monics @/ : X/ >— [/ =: X/*1J ¢ Inj(¥) for j € {0, ...,I — 1}. It remains to establish

isomorphisms of functors i, : hgi; = (hX J) such that

o exii (=0 at) = exim (Bi,f o —> on Homg (X1, X0 for all 0 < i < j < 1,

® cyij (— O[W) = eyi+lj (%o —) on Homi(X”l’j, Xy forall0<i < j<L

We proceed inductively: Set nxo; := fjxo; for j € {0,...,l}. Then exo; = éxo; and the required
properties hold. To construct nyi+i+1 for i, j € {0,...,/ — 1} with i < j, suppose that ny » with the
required properties is defined whenever i’ < iori# = i+ 1 and j/ < j. We may then assume that
XiJ = X g+l = K+l Rl = XL i = i, and@ = [E To complete the induction, apply
Lemma 7.9 to the homotopy cartesian squares

XiJ 2 xij+l] XiJ ﬁ—> i+l
gii O Bt & O Gt
il @t il el Girlj P Giv jel
xithi @ x xithi 270 g,

in ¥, see Proposition 2.9 and Lemma 2.17. O
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Lemma 7.9. In a triangulated category T, hom-finite over a field, consider two homotopy cartesian

A B A—
c—<5p ¢ ——

Suppose that there are isomorphisms of functors na: hy = (h ) B: hp = (hB)*, ne: he = (hc)*,
and fip: hp = (hD) , where D € T, such that

squares:

—2

bt%bﬁz

e ¢4(—oa) = ep(do—)on Hom(B, A),

o e4(— o) =ec(¢o-)onHom(C,A).

Then there is an isomorphism of functors np: hp = (hD ) such that

e ep(—ob) = ep(b o —) on Hom(D, B),

e ec(-od) =ep(do—) on Hom(D,C).

Proof. Set ep = e;, € (hg)* and consider the morphisms b: B — D and d: ¢ — D such that

ep(— 0 b) = ép(b o —) on Hom(D, B) and ec(- o d) = ép(d o —) on Hom(D, C), see Lemma 7.2. The
second homotopy cartesian square and [BK89, Prop. 3.3] yield an isomorphism

=|f
a l
! <> L O
A—> BeC ——> D
of distinguished triangles in 7. Define 77p as the composition
hp ——==--2---- idy «— ép(fo—-)=ep

R

5/ \ S

o ep(—ob) =ép(bo-)=eép(fbo-)=ep(bo-)onHom(D,B),
e ec(-od)=ép(do-)=eép(fdo-)=ep(do-)onHom(D,C),
as desired. O
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