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Abstract. Buchweitz related the singularity category of a (strongly) Gorenstein ring and the stable
category of maximal Cohen-Macaulay modules by a triangle equivalence. We phrase his result in a
relative categorical setting based on N-complexes instead of classical 2-complexes. The role of Cohen-
Macaulay modules is played by chains of monics in a Frobenius subcategory of an exact category. As a
byproduct, we provide foundational results on derived categories of N-complexes over exact categories
known from the Abelian case or for 2-complexes.
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Introduction

The Auslander-Buchsbaum-Serre theorem states that a Noetherian local ring S is regular if and only
if all S -modules have a finite projective resolution. In 1980, Eisenbud [Eis80] showed that, over a
complete intersection S , any minimal free resolution with bounded ranks becomes 2-periodic after a
finite number of steps, depending only on dim(S ).

In an unpublished preprint from 1986, Buchweitz captured this phenomenon in categorical language.
To extract the asymptotic part of a complex he forms the Verdier quotient

Db(S ) = Db(S )/Perf(S )

of the bounded derived category by complexes of projective modules, the perfect complexes. This
stabilized derived category of a general (possibly non-commutative) ring S can be seen as a measure
for its non-regularity. In 2004, it was rediscovered by Orlov [Orl04] in a geometric setting and is today
known as the singularity category.

Buchweitz works over a (strongly) Gorenstein ring S . Beyond the (two-sided) injective dimension
of S , non-zero syzygies of finite S -modules are maximal Cohen-Macaulay modules. Conversely,
any such module can be considered a complex, when placed at different positions. This suggests an
equivalence betweenDb(S ) and the stable category MCM(S ) of maximal Cohen-Macaulay modules.
Buchweitz confirmed this fact involving the category APC(S ) of complete resolutions. It serves both
as a middleman between the two categories, who translates high to low syzygies and to compute Tate
cohomology over S .

In 2021, Avramov, Briggs, Iyengar, and Letz [Buc21] published an annotated version of Buchweitz’s
manuscript. In Appendix B, they prove Buchweitz’s result under weaker hypotheses, where any finite
S -module is assumed to have a totally reflexive syzygy of order depending on the module.

Building on previous work of Murfet and Salarian [MS11] and others, Christensen et al. [Chr+23;
CET20] generalized Buchweitz’s theorem to schemes.

This article provides a purely categorical formulation of Buchweitz’s theorem: We replace the cat-
egory of finite S -modules by a general exact idempotent complete category E and the subcategory
MCM(S ) by a Frobenius subcategory F , subject to a list of conditions. As an additional direction
of generalization, we pass to a bounded derived category Db

N(E) of N-complexes, where the Nth
power of the differential is zero for N ≥ 2. As a consequence, F becomes the category Morm

N−2(F )
of chains of N − 2 many monics. Complete N-resolutions are then objects of the stable category
APCN(F ) = TAPCN(F ) of (totally) acyclic N-complexes over F with projective objects. More
specifically, our main result is

Theorem A. Let E be an exact idempotent complete category and F a Frobenius category, which is
a fully exact, replete subcategory of E with Proj(F ) = Proj(E). Suppose that every object in E has a
syzygy in F . Then there is a commutative diagram of triangle equivalences
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APCN(F ) Morm
N−2(F )

Db
N(E),

≃

τ≤0

Ω1

≃

≃

ι0

where ι0 is the embedding, τ≤0 the hard truncation and Ω1 the N-syzygy, at the respective positions.

Our proof that τ≤0 is an equivalence is inspired by the work of Orlov [Orl09].

Theorem A is known in special cases: Bahiraei, Hafezi, and Nematbakhsh [BHN16] establish an
equivalence between TAPCN(S ) and Db

N(S ) over a left coherent ring S using triangular matrix rings.
For N = 2, Christensen et al. prove the equivalences in Theorem A for a complete, hereditary cotorsion
pair (U,V) in an Abelian categoryA, see [Chr+23, Thm. 3.10] and [CET20, Thm. 3.8]. In their setup,
E = V and F is the subcategory of rightU-Gorenstein objects inAwith Proj(F ) = U∩V = Proj(E),
see [CET20, Thm. 2.11] and [Chr+23, Prop. 2.7.(a), Thm. 3.6]. Brightbill and Miemietz [BM24]
prove Theorem A, without explicit mention of τ≤0, under the assumption that E is a Gorenstein Abelian
category and F its subcategory of Gorenstein projective objects.1

Already in 1942, N-complexes appeared in the work of Mayer [May42] generalizing simplicial ho-
mology theory. Kapranov [Kap96] and Dubois-Violette [Dub98] studied their homological properties.
They find application in physics and other areas of mathematics, see for instance [DH99; CSW07;
Hen08] and [Est07; GH10; KQ15]. Cassel and Wambst [KW98] studied N-resolutions, but only of
single objects.

Theorem A requires foundations of N-derived categories over exact categories. Some have been laid
by Iyama, Kato and Miyachi [IKM17] in the Abelian case, see also [YD15] and [YW15]. General re-
sults on semiorthogonal decompositions by Jørgensen and Kato [JK15] turn out particularly useful in
this context. We combine this work with Keller’s [Kel90; Kel96] on 2-derived categories of exact cat-
egories and rely on a generalization for deflation-exact categories due to Henrard and van Roosmalen
[HR20]. In particular, we construct N-resolutions of bounded above N-complexes, see Subsection 2.4.
This leads us to extend results of Verdier [Ver96, Ch. III, Thm. 1.2.3] and [IKM17, Thm. 3.12] in the
following two theorems, formulated using Verdier’s notation:

Theorem B. For an exact idempotent complete category E there is a diagram of canonical fully
faithful, triangle functors and equivalences:

1The final version of their work was published shortly before the completion of this article.
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D+N(E)

D
+,b
N (E) D

∞,+
N (E)

Db
N(E) D

∞,b
N (E) DN(E)

D
−,b
N (E) D

∞,−
N (E)

D−N(E)

≃

≃≃

≃≃

≃

Theorem C. Let E be an exact idempotent complete category with enough projectives.

(a) The pair (K−N (Proj(E)),K−,∅N (E)) is a semiorthogonal decomposition of K−N (E), which gives
rise to a triangle equivalenceD−N(E) ≃ K−N (Proj(E)).

(b) The pair (K−,bEN (Proj(E)),K−,∅N (E)) is a semiorthogonal decomposition of K−,bN (E), which
gives rise to a triangle equivalenceDb

N(E) ≃ K−,bEN (Proj(E)).

The obvious dual statements hold as well.

Theorems A to C agree with Theorems 3.37, 3.9 and 3.11 of the main part.

1. Preliminaries

Unless stated otherwise, all (sub)categories and functors considered are assumed to be (full) additive.

Our main reference on the topic of triangulated categories is Neeman’s book [Nee01]. However,
we require the more general definition of a triangulated category whose suspension functor is only a
autoequivalence instead of an automorphism. These two definitions agree up to a triangulated equiva-
lence, see [KV87, §2] and [May01, §2].
Recall that a triangle equivalence is a triangulated functor which is an equivalence of categories. Its
quasi-inverse is automatically a triangulated functor, see [BK89, Prop. 1.4] for a more general state-
ment.

Unless stated otherwise, the image of a functor always means the full essential image. Given a fully
faithful (triangulated) functor F : C′ → C, we tacitly identify C′ up to equivalence with its image
F(C′), which is a strictly full (triangulated) subcategory of C.

Bullets in diagrams represent arbitrary objects, and El denotes the unit matrix of size l ∈ N.

1.1. Exact categories. For convenience of the reader, we recollect relevant definitions and results on
the topic of exact categories in the sense of Quillen [Qui73]. Our main reference is Bühler’s expository
article [Büh10], which relies in part on work of Keller [Kel90; Kel96].

Definition 1.1.
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(a) A pullback (dashed) is the limit of a diagram (solid) of the form

• •

• •.

a′

b′ b

a

(b) A pushout (dashed) is the colimit of a diagram (solid) of the form

• •

• •.

a

b b′

a′

By abuse of wording, the morphism a′ is called a pullback, resp. pushout, of a along b. The com-
pleted diagrams are also called a pullback (square), resp. pushout (square). A square is called
bicartesian if it is both a pullback and a pushout.

Remark 1.2. If (X) and (Y) are two pullback, resp. pushout squares, then their concatenation (XY) is
again a pullback, resp. pushout square.

For later reference, we mention the following converse of Remark 1.2:

Lemma 1.3. Consider the following commutative diagram in an additive category:

A B C

A′ B′ C′.

r

a (X)

s

b (Y) c

r′ s′

(a) If the outer square (XY) is a pushout and
(
b r′

)
: B ⊕ A′ → B′ is an epic, then (Y) is a

pushout.

(b) If the outer square (XY) is a pullback and

sb
 : B→ C ⊕ B′ is a monic, then (X) is a pullback.

Proof.

(a) Consider the solid commutative diagram

A B C

A′ B′ C′

P.

r

a

s

b c

tr′

t′r′

s′

t′
u

The outer pushout square yields a unique dashed morphism u with uc = t and us′r′ = t′r′, hence
with uc = t and us′r′ = t′r′. Since

(
b r′

)
is an epic, us′ = t′ follows from

us′
(
b r′

)
=
(
us′b us′r′

)
=
(
ucs t′r′

)
=
(
ts t′r′

)
=
(
t′b t′r′

)
= t′
(
b r′

)
.
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(b) is dual to (a). □

Definition 1.4 ([Büh10, Def. 2.1]). Let S be a collection of pairs (i, p) of morphisms in an additive
category E, where i is a kernel of p and p is a cokernel of i. If (i, p) ∈ S, then i is called an (S-
)admissible monic and p an (S-)admissible epic. The pairs (i, p) ∈ S are referred to as a short
(S-)exact sequences in E and are displayed as

A′ A A′′.i p

The collection S is said to define an exact structure on E if S is closed under isomorphisms and if
the following axioms are satisfied:

(a) For all objects A ∈ E, the identity idA is an admissible monic and epic.
(b) Composition preserves admissible monics and epics.
(c) Pushout, resp. pullback, along arbitrary morphisms exists for and preserves admissible mon-

ics, resp. epics.

In this case, (E,S), or just E, is called an exact category.

Remark 1.5 ([Büh10, Rem. 2.2]). If E is an exact category, then so is Eop with admissible monics and
epics exchanged. Therefore, each statement on exact structures has a dual. For the sake of clarity, we
formulate some less obvious dual statements explicitly.

Definition 1.6. LetA be an additive category.

(a) A morphism inA is called a split epic (monic) if it has a right (left) inverse.
(b) A sequence of composable morphisms inA is called a split short exact if it is isomorphic to

A A ⊕ B B

for A, B ∈ A.

Remark 1.7 ([Büh10, Rem. 7.4]). If a split epic r : Y Z in an additive category has a kernel i : X →

Y , then the sequence X Y Zi r is split short exact.

Proposition 1.8 ([Büh10, Prop. 2.9]). In an exact category, finite direct sums of short exact sequences
are again short exact. In particular, any split short exact sequence is short exact. □

Example 1.9.

(a) Any additive category has an exact structure given by the split short exact sequences. We refer to
it as the split exact structure.

(b) Any Abelian category has the maximal exact structure with all monics and epics admissible.
(c) Any diagram category over an exact category E has an exact structure, defined component-wise

by the exact structure of E. We refer to it as the termwise exact structure.

Proposition 1.10 (Obscure axiom, [Büh10, Prop. 2.16]). In an exact category, the following state-
ments hold:

(a) If a morphism i : A→ B has a cokernel, and b : B→ C is a morphism such that bi : A↣ C is
an admissible monic, then i is an admissible monic.
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(b) If a morphism p : B→ C has a kernel, and a : A → B is a morphism such that pa : A ↠ C is
an admissible epic, then p is an admissible epic. □

Corollary 1.11 ([Büh10, Cor. 2.18]). Let (i, p) and (i′, p′) be two pairs of composable morphisms in
an exact category. If their direct sum (i⊕ i′, p⊕ p′) is short exact, then both (i, p) and (i′, p′) are short
exact. □

Proposition 1.12 ([Büh10, Prop. 2.12]).

(a) For a square

A B

A′ B′

i

f f ′

i′

in an exact category, the following statements are equivalent:
(1) The square is a pushout.
(2) The square is bicartesian.

(3) The sequence A B ⊕ A′ B′

 i

− f

 (
f ′ i′

)
is short exact.

(4) The square is part of a commutative diagram

A B C

A′ B′ C.

i

f f ′

i′

(b) For a square

A B

A′ B′

p′

g′ g

p

in an exact category, the following statements are equivalent:
(1) The square is a pullback.
(2) The square is bicartesian.

(3) The sequence A B ⊕ A′ B′

p
′

g′

 (
−g p

)
is short exact.

(4) The square is part of a commutative diagram

K A B

K A′ B′.

p′

g′ g

p
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□

Corollary 1.13. In an exact category the following statements hold:

(a) Pushouts of admissible monics and pullbacks of admissible epics are bicartesian squares.
(b) A square

A B

C D
is a pushout if and only if it is a pullback. In this case, opposite arrows are admissible
morphisms of the same type.

Proof.

(a) For the pushout, combine Proposition 1.12.(a).(1) ⇔ (2) with the pullback axiom, see Defini-
tion 1.4.(c). The argument for the pullback is dual.

(b) If the given diagram is a pushout, then it is a pullback by (a) and A↠ C is an admissible epic by
the pushout axiom, see Definition 1.4.(c). The converse implication is dual. □

Proposition 1.14 ([Büh10, Prop. 2.15]). In an exact category, pullback along an admissible epic
preserves admissible monics and pushout along an admissible monic preserves admissible epics. □

Lemma 1.15 (Noether lemma, [Büh10, Ex. 3.7]). Consider the commutative diagram

A′ B′ C′

A B C

A′′ B′′ C′′

in an exact category, where the rows and solid columns are short exact sequences. Then there exist
unique morphisms C′ → C and C → C′′ making the diagram commute, and C′ ↣ C ↠ C′′ a short
exact sequence. □

Definition 1.16. A covariant functor F : (E′,S′) → (E,S) between exact categories is called exact if
(F(i), F(p)) ∈ S for all (i, p) ∈ S′. It is fully exact if, in addition, (F(i), F(p)) ∈ S implies (i, p) ∈ S′,
for all pairs (i, p) of composable morphisms in E′. Obvious dual notions are defined for contravariant
functors.
A subcategory E′ of E is called (fully) exact if it is an exact category itself and the inclusion functor
E′ → E is (fully) exact.2 Note that subcategories of additive categories are fully exact with respect to
the split exact structure, see Example 1.9.(a).

2Bühler uses the term fully exact for what we call extension-closed, see Definition 1.18.
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Proposition 1.17 ([Büh10, Prop. 5.2]). An exact functor preserves pushouts along admissible monics
and pullbacks along admissible epics. □

Definition 1.18 ([Büh10, Def. 10.21]). Let E′ be a subcategory of an exact category E. We call
E′ extension-closed if any X ∈ E which fits into a short exact sequence Y ′ X Y with
Y,Y ′ ∈ E′ is an object of E′.

Part (a) of Lemma 1.19 is [Büh10, Lem. 10.20], part (b) follows from Proposition 1.12:

Lemma 1.19. A subcategory E′ of an exact category E is fully exact if one of the following conditions
holds:

(a) E′ is an extension-closed subcategory of E.
(b) E′ is closed in E under kernels of admissible epics and cokernels of admissible monics.

In both cases, the exact structure is given by short exact sequences in E with objects in E′. □

Notation 1.20. The category of sequences over an additive category A is the diagram category
C(A) := Func(T,A) where T is the infinite linear quiver

· · · •
−1

•
0

•
1

· · ·

with vertices indexed by Z in ascending order. We denote denote objects of C(A) by X = (X, dX),
where X = (Xk)k∈Z and dX = (dk

X)k∈Z with dk
X : Xk → Xk+1 for k ∈ Z. We omit the index k of dk

X when
it is clear from the context. Incomplete sequences are extended by zeros without explicit mention.

Remark 1.21. Termwise finite coproducts of sequences over an additive category exist.

Remark 1.22. If E is an exact category, then C(E) has two natural exact structures: The termwise
exact structure from Example 1.9.(c) and the termsplit exact structure defined in the same way by
the underlying additive category of E, see Example 1.9.(a). Unless mentioned otherwise the termsplit
exact structure is the default choice.
If E′ is a (fully) exact subcategory of E, then so is C(E′) in C(E′) due to the termwise exact structure.
In particular, CN(A′) is fully exact in CN(A) for a subcategoryA′ of an additive categoryA.

1.2. Stable categories.

Definition 1.23. An object P of an exact category E is called a projective if the covariant functor
HomE(P,−) : E → Ab is exact. Dually, an object I of E is called an injective if the contravariant
functor HomE(−, I) : E → Ab is exact. The respective subcategories of E are denoted by Proj(E) and
Inj(E). An object is called a projective-injective if it is both projective and injective.

Proposition 1.24 ([Büh10, Prop. 11.3, Cor. 11.4]). An object P of an exact category E is projective if
and only if any one of the following equivalent conditions holds:

(1) For any admissible epic X ↠ Y, any morphism P→ Y lifts as follows:
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X

P Y

(2) The functor HomE(P,−) sends admissible epics to surjections.
(3) Every admissible epic X ↠ P splits.

If a morphism P→ Z with P ∈ Proj(E) admits a right inverse, then Z is projective as well. □

Remark 1.25. Due to Proposition 1.24.(3), Remark 1.7, and their duals, the subcategories Proj(E) and
Inj(E) of an exact category E are closed under direct summands and extensions and thus fully exact,
see Lemma 1.19.(a). Their exact structure is the split exact structure, see Example 1.9.(a).

Notation 1.26. The projectively stable category of an exact category E is denoted by E. It has the
same objects as E, and two morphisms agree if their difference factors through a projective. Dually,
we denote the injectively stable category by E. These constructions have a universal property, see
[Mac98, Prop. II.8.1].

Remark 1.27. In an exact category E, the following statements hold:

(a) By Proposition 1.24.(1), a morphism f : X → Y in E is zero in E if and only if it factors through
any admissible epic pY : P ↠ Y with P ∈ Proj(E). Dually, f is zero in E if and only if it factors
through any admissible monic iX : X ↣ I with I ∈ Inj(E).

(b) If A ∈ E with A = 0 in E, then A ∈ Proj(E). Indeed, idA = 0 in E yields a P ∈ Proj(E) and a
morphism P → A in E with right inverse. Then A ∈ Proj(E) due to the particular statement of
Proposition 1.24.

Definition 1.28. We say that an exact subcategory E′ of E has enough E-projectives if there is an
admissible epic P ↠ X in E′ with P ∈ Proj(E) for each X ∈ E′. Having enough E-injectives is
defined dually. If this holds for E′ = E, one says that E has enough enough projectives, resp. enough
injectives.

Remark 1.29. An exact subcategory E′ of E has enough E-projectives if E′ has enough projectives and
Proj(E′) ⊆ Proj(E).

Definition 1.30. A Frobenius (exact) category is an exact category F with enough injectives, enough
projectives, and Proj(F ) = Inj(F ). In this case, F = F is called the stable category of F . By a sub-
Frobenius category of a Frobenius category F , we mean an exact subcategory F ′ which has enough
F -projectives and enough F -injectives. This terminology is justified by Lemma 1.36.(b).

Construction 1.31. Let E be an exact category with enough injectives. For each X ∈ E, pick an
admissible monic i = iX : X ↣ I(X) with I(X) ∈ Inj(E) and cokernel denoted by ΣX. If f : X → Y is
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a morphism in E, then Proposition 1.12.(a) yields a pushout diagram

X I(X) ΣX

Y C( f ) ΣX

i

f □ f ′

i′

(D( f ))

and a short exact sequence

X I(X) ⊕ Y C( f ).

 i

− f

 (
f ′ i′

)
(S ( f ))

The object C( f ) ∈ E is called the (mapping) cone of f . A standard triangle in E is any sequence of
the form

X Y C( f ) ΣX.
f

(T ( f ))

Dually, if E has enough projectives, the (mapping) cocone C∗( f ) of f fits into a pullback diagram

Σ−1Y C∗( f ) X

Σ−1Y P(Y) Y

□ f

p

(D∗( f ))

and into a short exact sequence

C∗( f ) X ⊕ P(Y) Y,

(
− f p

)
(S ∗( f ))

where p = pY : P(Y) ↠ Y is an admissible epic with P(Y) ∈ Proj(E), and Σ−1Y denotes the cokernel
of p. Note that ΣX � C(X → 0) and Σ−1Y � C∗(0→ Y) in E.

Theorem 1.32 ([Hap88, Thm. 2.6]). The stable category of a Frobenius category is triangulated. Its
suspension functor Σ and the quasi-inverse Σ−1 are defined as in Construction 1.31. The distinguished
triangles are those candidate triangles isomorphic to standard triangles. □

Lemma 1.33 ([Hap88, Lem. 2.7]). Any short exact sequence X Y Zi p
in a Frobenius cat-

egory F induces a distinguished triangle X Y Z ΣXi p
in F . □

Remark 1.34. Rotating the distinguished triangle obtained from (S ∗( f )) by Lemma 1.33 and compar-
ing with (T ( f )) yields an isomorphism ΣC∗( f ) � C( f ) in F .

Proposition 1.35 ([IKM16, Prop. 7.3]). If F : F ′ → F is an exact functor between Frobenius
categories which preserves projective-injectives3, then the induced functor F : F ′ → F is triangu-
lated. □

Lemma 1.36. Let E′ be an exact subcategory of E.

3The hypothesis can be restricted to the objects of the form I(X) and P(Y) from Construction 1.31.
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(a) If E′ has enough E-projectives, then Proj(E′) = Proj(E)∩E′, and the canonical functor E′ → E
is fully faithful.

(b) If F ′ is a sub-Frobenius category of F , then F ′ is Frobenius, and the canonical functor
F
′
→ F is fully faithful and triangulated.

Proof.

(a) Let X ∈ Proj(E′) and pick an admissible epic p : P ↠ X in E′ with P ∈ Proj(E). Then p has
a right inverse due to Proposition 1.24.(1) applied to X ∈ Proj(E′) and idX . We obtain X ∈
Proj(E) by the particular statement of Proposition 1.24. The converse inclusion holds trivially
by Proposition 1.24.(1). Now E′ ⊆ E induces a full functor E′ → E. For faithfulness, consider
a morphism f : X → Y in E′ which is zero in E. By assumption, there is an admissible epic
p : P↠ Y in E with P ∈ Proj(E) ∩ E′ = Proj(E′). Then f factors through p and is zero in E′, see
Remark 1.27.(a).

(b) By (a), F ′ is Frobenius, and F ′ ⊆ F induces a fully faithful functor F → F ′. It is triangulated
by Proposition 1.35. □

1.3. Acyclicity and syzygies.

Definition 1.37 ([Büh10, Def. 8.1]). An admissible morphism in an exact category is the composition
of an admissible epic and an admissible monic, displayed as

X Y

I.

◦

Remark 1.38. The admissible morphisms, which are monics (epics), are exactly the admissible monics
(epics) in Definition 1.4.

Remark 1.39 ([Büh10, Lem. 8.4, Rem. 8.5, Ex. 8.6]).

(a) The defining factorization of an admissible morphism is unique up to a unique isomorphism.
(b) Any admissible morphism f has a so-called analysis

X Y

Z I C,

e

◦
f

ck m

where k is a kernel, c is a cokernel, e is a coimage, and m is an image of f . In particular, all these
morphisms are uniquely determined by f up to a unique isomorphism.

(c) Only for Abelian categories the class of admissible morphisms is closed under composition.

Definition 1.40 ([Büh10, Def. 8.8]). Let E be an exact category.

(a) A sequence X′ X X′′ of two morphisms in E is called acyclic if both are admis-
sible morphisms and their factorizations
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X′ X X′′

Z C

◦ ◦

give rise to a short exact sequence Z X C.

(b) A sequence X = (Xk)k∈Z ∈ C(E) is called 2-acyclic at position n ∈ Z if the sequence
Xn−1 Xn Xn+1 is acyclic in the sense of (a). It is called 2-acyclic if it is 2-acyclic
at all positions n ∈ Z.

Definition 1.41. A projective resolution of an object X ∈ E is a sequence P ∈ C(E) with Pk ∈ Proj(E)
for k ∈ Z≤0 and P = 0 for k ∈ Z>0 which fits into a 2-acyclic sequence

P : · · · P−n P−n−1 · · · P−1 P0 X

C−n C−1 C0.

◦ ◦ ◦ ◦ ◦

It exists for X ∈ E if E has enough projectives, see [Büh10, Prop. 12.2]. We refer to the object
syzn

P(X) := C−n as an nth syzygy of X, for any n ∈ N.

As in the Abelian case, Schanuel’s Lemma holds in any exact category, and iterated application yields
the well-definedness of syzygies up to projective equivalence.

Lemma 1.42 (Schanuel’s Lemma). Consider two short exact sequences

Z P X and Z′ P′ Xi p i′ p′

in an exact category E with P, P′ ∈ Proj(E). Then Z ⊕ P′ � Z′ ⊕ P.

Proof. Due to Proposition 1.24.(1), we obtain a commutative diagram

Z P X

Z′ P′ X.

i

b

p

a

i′ p′

Then Proposition 1.12.(a) yields a short exact sequence Z ↣ Z′ ⊕ P↠ P′ and the claim follows from
Proposition 1.24.(3) and Remark 1.7.4 □

Proposition 1.43. Let E be an exact category. If P and Q are two projective resolutions of X ∈ E,
then syzn

P(X) ⊕ Q̃n � syzn
Q(X) ⊕ P̃n for any n ∈ N and suitable P̃n, Q̃n ∈ Proj(E). □

1.4. Categories of N-complexes. In this subsection, we review some foundational results on N-
complexes by Iyama, Kato and Miyachi [IKM17].

Definition 1.44. Let N ∈ N with N ≥ 2. A sequence X ∈ C(A) over an additive categoryA is called
an N-complex if the N-fold composition dn+N−1

X ◦ · · · ◦ dn
X is zero for all n ∈ Z. The subcategory of

C(A) consisting of N-complexes is denoted by CN(A).
4A proof of the dual statement can be found in [MR22, Prop. 3.1].
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Remark 1.45. If E is an exact category and X Y Z is a termwise short exact sequence in
C(E) with Y ∈ CN(E), then also X,Z ∈ CN(E) by pre- and postcomposition. So, CN(E) is a fully exact
subcategory of C(E) with the termwise exact structure by Lemma 1.19.(b). In particular, CN(E) is a
fully exact subcategory of C(E) with its default exact structure, see Remark 1.22.
On the fully exact subcategory CN(Proj(E)) of CN(E), both the termwise and the termsplit exact struc-
ture coincide with the exact structure as a fully exact subcategory of C(Proj(E)), see Remark 1.25.
This holds verbatim for CN(Inj(E)).

Notation 1.46. Given an object A ∈ A of an additive categoryA, the covariant Hom functor HomA(A,−) :
C(A) → C(Ab) is defined by HomA(A, X)n := HomA(A, Xn) for X ∈ C(A) and n ∈ Z. Dually, the
contravariant Hom functor is defined by HomA(X, A)n := HomA(X−n, A).

Notation 1.47 ([IKM17, §2]). LetA be an additive category. For A ∈ A, s ∈ Z, and t ∈ {1, . . . ,N−1},
the N-complex

µs
t (A) : · · · 0 As−t+1 · · · As−1 As 0 · · ·

idA idA idA

is defined by Ak = A for all k ∈ {s − t + 1, . . . , s}.

Remark 1.48. Let A be an additive category. For A, B ∈ A, s ∈ Z, and t ∈ {1, . . . ,N − 1}, we have
HomA(B, µs

t (A)) = µs
t (HomA(B, A)) and HomA(µs

t (A), B) = µ−s+t−1
t (HomA(A, B)).

Remark 1.49 ([IKM17, (2.1)]). For any N-complex X ∈ CN(A), A ∈ A, and s ∈ Z, there are functorial
isomorphisms

HomA(A, Xs) � HomCN (A)(µs+N−1
N (A), X) and HomA(Xs, A) � HomCN (A)(X, µs

N(A))

of Abelian groups given by mapping f ∈ HomA(A, Xs) and g ∈ HomA(Xs, A) to ps
f and is

g, respec-
tively, as depicted in the following commutative diagram:

µs+N−1
N (A) : · · · 0 A · · · A 0 · · ·

X : · · · Xs−1 Xs · · · Xs+N−1 Xs+N · · ·

X : · · · Xs−N Xs−N+1 · · · Xs Xs+1 · · ·

µs
N(A) : · · · 0 A · · · A 0 · · ·

ps
f

f

idA idA

d{N−1}
X f

dX dX dX dX dX dX

is
g

dX dX

d{N−1}
X g

dX dX

g

dX dX

idA idA

Note that HomA(is
g, B) = p−s

HomA(g,B) and HomA(ps
f , B) = i−s

HomA( f ,B) for any B ∈ A.

Lemma 1.50 ([IKM17, Lem. 2.2]). For an additive category A, the N-complexes of the form µs
t (A)

are projective-injectives of CN(A) for each A ∈ A, s ∈ Z, and t ∈ {1, . . . ,N − 1}.

Construction 1.51 ([IKM17, (2.2)]). For any additive category A, the exact category CN(A) has
enough projectives and injectives: For each X ∈ CN(A), there is an
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• admissible monic iX :=
(
ikidXk

)
k∈Z

: X ↣ I(X) with I(X) = IN(X) :=
⊕

k∈Z µ
k
N(Xk) injective,

and an
• admissible epic pX :=

(
pk

idXk

)
k∈Z

: P(X) ↠ X with P(X) = PN(X) :=
⊕

k∈Z µ
k
N(Xk−N+1)

projective,

see Remarks 1.21 and 1.49 and Lemma 1.50. These are our default choices for Construction 1.31.

Remark 1.52. Note that I and P, as defined in Construction 1.51, are functorial: If f : X → Y is a
morphism of N-complexes over an exact category E, then the component I( f )n, resp. P( f )n, of the lift
is given on Pk by f k, where k ∈ {n, . . . , n + N − 1}, resp. k ∈ {n − N + 1, . . . , n}.

Remark 1.53. For an N-complex X ∈ CN(A) over an additive category A and A ∈ A, we have in
CN(Ab):

(a) HomA(iX , A) = pHomA(X,A) and HomA(pX , A) = iHomA(X,A), see Remark 1.49.
(b) In particular, applying HomA(−, A) to the sequences (S ( f )) and (S ∗( f )) yields

HomA(C( f ), A) � C∗(HomA( f , A)) and HomA(C∗( f ), A) � C(HomA( f , A)).

Theorem 1.54 ([Hap88, p. 28], [IKM17, Thm. 2.1]). The exact category CN(A) of N-complexes over
an additive categoryA is Frobenius (with the termsplit exact structure). □

Notation 1.55. The stable category of CN(A) is denoted by KN(A). This is a triangulated category,
see Theorems 1.32 and 1.54.

Remark 1.56. Let A′ be a subcategory of an additive category A. Due to Remarks 1.22 and 1.29,
Construction 1.51, and Theorem 1.54, all assumptions in Lemma 1.36.(b) are satisfied, and CN(A′) ⊆
CN(A) induces a fully faithful, triangulated functor KN(A′)→ KN(A).

Notation 1.57. Let X ∈ C(A) be a sequence over an additive categoryA.

• We write d{r}X = (dn+r−1
X ◦ · · · ◦ dn

X)n∈Z for the rth power of dX .
• The shift functor Θ : C(A)→ C(A) is given by (ΘX)k := Xk+1 and dk

ΘX := dk+1
X .

• By −X we denote the sequence with (−X)k := Xk and dk
−X := −dk

X .

Construction 1.58. Let f : X → Y be a morphism of N-complexes over an additive categoryA.

(a) In [IKM17, 693ff.], there is an explicit description of the cone C( f ) and the cocone C∗( f ) and
their special cases, the suspension functor Σ and its quasi-inverse Σ−1:

(ΣX)n =

N−1⊕
k=1

Xn+k, dΣX =

 0 EN−2

−d{N−1}
X −d{N−2}

X −d{N−3}
X · · · −d{2}X −dX

 ,

(Σ−1X)n =

−1⊕
k=−N+1

Xn+k, dΣ−1X =



−dX

−d{2}X
... EN−2

−d{N−3}
X

−d{N−2}
X

−d{N−1}
X 0


,
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C( f )n = Yn ⊕

N−1⊕
k=1

Xn+k, dC( f ) =

 dY f 0 · · · 0 0
0 dΣX

 ,

C∗( f )n =

−1⊕
k=−N+1

Yn+k ⊕ Xn, dC∗( f ) =



0
0

dΣ−1Y
...

0
− f

0 dX


.

(b) Note that C(X → 0) = ΣX and C∗(0→ Y) = Σ−1Y , see Construction 1.31.
(c) Comparing cone and cocone in the case N = 2 yields ΘC∗( f ) = −C( f ), see Remark 1.34.

Theorem 1.59 ([IKM17, Thm. 2.4]). There is a functorial isomorphism Σ2 � ΘN of endofunctors on
KN(A), for any additive categoryA.

Lemma 1.60 ([IKM17, Lem. 2.6 (i)]). Let A be an additive category. For all A ∈ A, k, s ∈ Z,
t ∈ {1, . . . ,N − 1}, and l ∈ {0, 1}, we have

Σ2k+lµs
t (A) =

µ
−kN+s
t (A), if l = 0,

µ−kN+s−t
N−t (A), if l = 1.

Notation 1.61. Given a sequence X ∈ C(A) over an additive categoryA, r ∈ N, and n ∈ Z, set

• Zn
(r) := Zn

(r)(X) := ker
(
dn+r−1

X ◦ · · · ◦ dn
X

)
,

• Bn
(r) := Bn

(r)(X) := im
(
dn−1

X ◦ · · · ◦ dn−r
X

)
,

• Cn
(r) := Cn

(r)(X) := coker
(
dn−1

X ◦ · · · ◦ dn−r
X

)
,

if the respective object exists. This is the case, for instance, if the respective r-fold composition is an
admissible morphism, see Definition 1.37. IfA is an Abelian category, the homology of an N-complex
X ∈ CN(A) is defined as

Hn
(r) := Hn

(r)(X) := Zn
(r)(X)/Bn

(N−r)(X).

The lower index r = 1 is omitted if N = 2.

Remark 1.62. For an object A of an additive categoryA,

Bn
(N−r)(µ

s
N(A)) = Zn

(r)(µ
s
N(A)) =

A, if s − r + 1 ≤ n ≤ s,

0, otherwise,

Cn
(r)(µ

s
N(A)) =

A, if s − N + 1 ≤ n ≤ s − N + r,

0, otherwise,

for all n, s ∈ Z and r ∈ {1, . . . ,N − 1}.

Remark 1.63 ([IKM17, (3.4)]). For an N-complex X ∈ CN(A) over an additive category A, and any
A ∈ A, there are the following isomorphisms of Abelian groups for all s ∈ Z and t ∈ {1, . . . ,N − 1}:
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(a) HomCN (A)(µs
t (A), X) � Z s−t+1

(t) (HomA(A, X))
(b) HomKN (A)(µs

t (A), X) � Hs−t+1
(t) (HomA(A, X))

(c) HomCN (A)(X, µs
t (A)) � Z−s

(t) (HomA(X, A))
(d) HomKN (A)(X, µs

t (A)) � H−s
(t) (HomA(X, A))

Definition 1.64. A morphism f : X → Y of N-complexes over an additive category A is called (N-
)null-homotopic if there exists a collection h = (hk)k∈Z of morphisms hk : Xk → Yk−N+1 in A such
that

f k =

N−1∑
r=0

d{N−r−1}
Y hk+rd{r}X

for all k ∈ Z. Such an h is referred to as an (N-)homotopy. Two morphisms in CN(A) are called (N-
)homotopy equivalent if their difference is N-null-homotopic. The homotopy category of CN(A)
has the same objects as CN(A) and N-homotopy equivalence classes as morphisms.

Theorem 1.65 ([IKM17, Thm. 2.3]). The homotopy category of CN(A) over an additive category A
is the stable category KN(A).

Definition 1.66. An N-complex X ∈ CN(A) over an additive categoryA is called (N-)null-homotopic
or (N-)contractible if idX is N-null-homotopic, or equivalently, if X = 0 in KN(E).

1.5. Categories of monics. Categories of morphisms have been studied by Brightbill and Miemietz
[BM24, §3]. We collect some of their results, see also [Büh10, Ex. 13.12].

Notation 1.67 ([BM24, Def. 3.1], [IKM17, Def 4.1]). For an additive category A and l ∈ N, let
Morl(A) denote the diagram category Func(Tl,A) where Tl is the linear quiver

•
1

•
2

· · · •
l

•
l+1

with l arrows. Over an exact category E, we denote by

• Morm
l (E) the subcategory of Morl(E) where all arrows map to admissible monics,

• Morsm
l (E) the subcategory of Morm

l (E) where all arrows map to split monics,
• More

l (E) the subcategory of Morl(E) where all arrows map to admissible epics and by
• Morse

l (E) the subcategory of More
l (E) where all arrows map to split epics.

Remark 1.68 ([BM24, p. 9]). The categories Morm
l (E)op and More

l (Eop) over an exact category E agree,
see Remark 1.5. Therefore, each statement about Morm

l (E) has a dual for More
l (E).

Notation 1.69. Let E be an exact category, l ∈ Nwith l < N, and n ∈ Z. Any object X1 · · · Xl+1

of Morm
l (E) can be considered as a bounded complex with Xl+1 at position n and zero otherwise, see

Notation 1.20. Homotopies between two such complexes are zero. This gives rise to fully faithful
functors

ιn = ιn
E

: Morm
l (E) CN(E) and ιn = ιn

E
: Morm

l (E) KN(E).

Notation 1.70 is analogous to Notation 1.47.

Notation 1.70. For an object A of an exact category E and t ∈ {1, . . . , l + 1}, we define the object
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µt(A) : 0 · · · 0 Al−t+2 · · · Al+1idA idA

of Morsm
l (E) by Ak := A for k ∈ {l − t + 2, . . . , l + 1}.

Theorem 1.71 ([BM24, Props. 3.5, 3.9, 3.11]). Let E be an exact category.

(a) The category Morm
l (E) is exact with the termwise exact structure.

(b) We have Proj(Morm
l (E)) = Morsm

l (Proj(E)) and Inj(Morm
l (E)) = Morsm

l (Inj(E)) = Morm
l (Inj(E)).

(c) If E has enough projectives resp. injectives, then so has Morm
l (E).

Corollary 1.72 ([BM24, Thm. 3.12]). IfF is a Frobenius category, then so is Morm
l (F ), and Proj(Morm

l (F )) =
Morm

l (Proj(F )). In particular, the stable category Morm
l(F ) is triangulated, see Theorem 1.32. □

Remark 1.73. In general, Morl(E) is not Frobenius even if E is so, see [BM24, Prop. 3.10].

Lemma 1.74. Let E′ be a (fully) exact subcategory of E. Then the same holds for the subcategory
Morm

l (E′) of Morm
l (E). If E′ has enough E-projectives, then the canonical functor Morm

l(E
′) →

Morm
l(E) is fully faithful.

Proof. The first statement holds due to the termwise exact structure. Suppose now that E′ has enough
E-projectives. Then Morm

l (E′) has enough projectives due to Theorem 1.71.(c). By Lemma 1.36.(a)
and Theorem 1.71.(b), we have

Proj(Morm
l (E′)) = Morsm

l (Proj(E′)) = Morsm
l (Proj(E) ∩ E′)

= Morsm
l (Proj(E)) ∩Morm

l (E′) = Proj(Morm
l (E)) ∩Morm

l (E′).

Then Morm
l (E′) has enough Morm

l (E)-projectives, see Remark 1.29, and Lemma 1.36.(a) yields the
claim. □

1.6. Idempotent complete categories.

Definition 1.75 ([Büh10, Def. 6.1]). An idempotent e : A → A in an additive category A is an
endomorphism with e2 = e. It is called split if there is a biproduct decomposition A � eA ⊕ (1 − e)A

of A into objects eA, (1 − e)A ∈ A such that e �

ideA 0
0 0

 with respect to this decomposition.

The category A is called idempotent complete if every idempotent splits or, equivalently, if every
idempotent has a kernel, see [Büh10, Rem. 6.2].

Remark 1.76. Let s : B → A and r : A → B be morphisms in an additive category A with rs = idB.
If the idempotent e := sr : A → A splits, then s induces an isomorphism B � eA, whose inverse is r
restricted to the direct summand eA of A.

Remark 1.77. The conditions on the morphisms defining a biproduct of sequences over an additive
category are termwise.

Lemma 1.78. Let a : A′ → A be a morphism in an additive category A. Let (e′, e) : a → a be an
idempotent in the morphism category of A. If both e′ and e are split, then so is (e′, e). That is, there
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are unique morphisms a′ = (e′, e)a : e′A′ → eA and a′′ = (1− (e′, e))a : (1− e′)A′ → (1− e)A forming
a biproduct a � a′ ⊕ a′′ given termwise by A′ � e′A′ ⊕ (1 − e′)A′ and A � eA ⊕ (1 − e)A.

Proof. Due to Remark 1.77, it suffices to construct a′ and a′′ to fit in the commutative diagrams

e′A′ eA

A′ A

(1 − e′)A′ (1 − e)A

a′

j′ j

a

q′ q

a′′

and

e′A′ eA

A′ A

(1 − e′)A′ (1 − e)A,

a′

a

r′ r

a′′

s′ s

where the vertical morphisms define the respective splittings of e′ and e. Using j′r′ = e′ and jr = e
we compute a j′r′ = ae′ = ea = jra. Then qa j′r′ = q jra = 0 as q j = 0, and hence qa j′ = 0 since r′

is an epic. As j is a kernel of q and q′ a cokernel of j′, the two dashed morphisms in the left diagram
exist. Then ja′r′ = a j′r′ = jra and hence a′r′ = ra since j is a monic. So, the upper right square
commutes, and analogously the lower one. □

Remark 1.79. If (e′, e) is an idempotent of a morphism, then e′ induces an idempotent of the kernel
and e of the cokernel, if the respective object exists.

Lemma 1.80. Consider a short exact sequence A′ A A′′i p
in an exact idempotent complete

category E and an idempotent (e′, e) : i→ i in the morphism category of E. Then there is an idempotent
(e, e′′) : p → p. The corresponding morphisms from Lemma 1.78 form a biproduct (i, p) � (i′, p′) ⊕
(i′′, p′′) of short exact sequences displayed as follows:

e′A′ eA e′′A′′

A′ A A′′

(1 − e′)A′ (1 − e)A (1 − e′′)A′′

i′

j′

p′

j j′′

i

q′

p

q q′′

i′′ p′′

In particular, applying idempotents preserves admissible monics.

Proof. Clearly, e′′ : A′′ → A′′ can be chosen as the induced morphism between cokernels, see Re-
mark 1.79. Fix a choice of splittings of the idempotents e′, e and e′′. Lemma 1.78, applied to the
idempotent (e′, e) of i and the idempotent (e, e′′) of p, yields the dashed morphisms and the desired
biproduct, see Remark 1.77. The sequences (i′, p′) and (i′′, p′′) are short exact by Corollary 1.11. □

Proposition 1.81.
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(a) IfA is an idempotent complete category, then so are C(A) and CN(A).
(b) If E is an exact idempotent complete category, then so is Morm

l (E).

Proof.

(a) This follows from Lemma 1.78 and Remarks 1.45 and 1.77.
(b) This follows from Lemma 1.80. □

1.7. Semiorthogonal decompositions. In this subsection, we review definitions and results on the
topic of semiorthogonal decompositions of triangulated categories.

Notation 1.82. Consider a triangulated categoryT with suspension functor Σ and subcategoriesU,V.
ThenU ∗V denotes the subcategory of T consisting of objects T ∈ T which fit into a distinguished
triangle U → T → V → ΣU where U ∈ U and V ∈ V.

Definition 1.83. A pair (U,V) of triangulated subcategories of a triangulated category T is called a
semiorthogonal decomposition of T if

(a) HomT (U,V) = 0 and
(b) T = U ∗V.

Proposition 1.84 ([IKM11, Prop. 1.2]). Let (U,V) be a semiorthogonal decomposition of a triangu-
lated category T . Then the inclusion functors i∗ : U → T and j∗ : V → T have a respective right
adjoint i! : T → U and left adjoint j∗ : T → V. These induce triangle equivalences T /V ≃ U and
T /U ≃ V. □

Remark 1.85. Let T be a triangulated category with suspension functor Σ. The covariant (contravari-
ant) Hom-functor is (co)homological: Given a distinguished triangle

Y Y ′ Y ′′ ΣY,
f g

each of the following two solid commutative diagrams can be completed by a dashed arrow:

X X

Y Y ′ Y ′′ Y Y ′ Y ′′

0
f ′

f g f

0

g

g′

Remark 1.86. The adjoints in Proposition 1.84 can be made explicit as follows, see [Bon90, Proof of
Lem. 3.1.(b)⇒ (c)]:

• For T ∈ T = U ∗ V, there is a distinguished triangle in T which defines i!T ∈ U up to
isomorphism:

i!T T VT Σi!T
uT

• Let f : T → T ′ be a morphism in T . Using HomT (U,V) = 0 and Remark 1.85, i! f is
uniquely determined by the commutative diagram
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i!T

T

i!T ′ T ′ VT ′ .

uT

0i! f

f

uT ′

The functor j∗ is given dually.

Theorem 1.87 ([JK15, Lem. 1.1, Thm. B]). Consider triangulated subcategoriesU,V of a triangu-
lated category T . Then the following conditions are equivalent:

(1) V ∗U ⊆ U ∗V.
(2) U ∗V is a triangulated subcategory of T .
(3) Any morphism in HomT (U,V) factors through an object ofU ∩V.

In this case, the following statements hold:

(a) The pair (U/(U∩V),V/(U∩V)) is a semiorthogonal decomposition of (U∗V)/(U∩V).
(b) There are triangle equivalencesU/(U ∩V) ≃ (U ∗V)/V andV/(U ∩V) ≃ (U ∗V)/U.
(c) The canonical functorsU/(U ∩V)→ T /V andV/(U ∩V)→ T /U are fully faithful. □

2. N-acyclicity

In this section, we define (total) N-acyclicity of sequences over an exact category E (Subsection 2.1).
We show that it is preserved locally under extensions, cones and suspensions (Subsection 2.2). This
leads to various triangulated subcategories of KN(E) known from the classical case. We describe
acyclic N-complexes over E equivalently in terms of so-called acyclic N-arrays (Subsection 2.3).
To resolve bounded above N-complexes over E, we extend a construction of Keller from the case
N = 2 (Subsection 2.4). If E is Frobenius, we relate complete resolutions with their N-syzygies
(Subsection 2.5).

2.1. Contraction and acyclicity. In this subsection, we define the concept of N-acyclicity by reduc-
tion to the special case N = 2, see Definition 1.40.

Definition 2.1. Let A be an additive category. Given N ∈ N≥2, n ∈ Z, and r ∈ {1, . . . ,N − 1}, the
contraction functor γn

r,N : C(A)→ C(A) is defined by sending X ∈ C(A) to the sequence

· · · Xn−N Xn−N+r Xn Xn+r Xn+N Xn+N+r · · ·
d{r}X d{N−r}

X d{r}X d{N−r}
X d{r}X

with Xn at position n, see Notation 1.57. A morphism ( f k)k∈Z in C(A) is mapped to

(. . . , f n−N+r, f n, f n+r, f n+N , . . . ).

By definition, γn
r,N restricts to a functor γn

r : CN(A)→ C2(A). If E is an exact category, γn
r,N : C(E)→

C(E) is exact with respect to the termwise exact structure, see Remark 1.22.



22 J. FRANK AND M. SCHULZE

Definition 2.2. Let E be an exact category and N ∈ N≥2. We call a sequence X ∈ C(E) N-acyclic at
position n ∈ Z if γn

r (X) is 2-acyclic at position n for all r ∈ {1, . . . ,N − 1}, see Definition 1.40.(b).
We call it totally N-acyclic at position n ∈ Z if, in addition, HomE(X, P) ∈ CN(Ab) is N-acyclic at
position −n for all P ∈ Proj(E), see Notation 1.46. We say that X is (totally) N-acyclic if it is (totally)
N-acyclic at all positions n ∈ Z.
The subcategory of C(E) consisting of N-acyclic sequences is denoted by C∞,∅N (E), its subcategory
of totally N-acyclic sequences by C∞,∅

∗

N (E). This notation becomes clear in Notation 2.19. Note that
C
∞,∅
N (E) is a subcategory of CN(E). For this reason we also use the term (totally) acyclic N-complex.

Remark 2.3. If F is a Frobenius category, then C∞,∅N (F ) = C∞,∅
∗

N (F ) as any P ∈ Proj(F ) = Inj(F )
makes HomF (−, P) an exact functor.

Remark 2.4.

(a) Over an additive categoryA, we have HomA(A,−)◦γn
r = γ

n
r ◦HomA(A,−) and HomA(−, A)◦γn

r =

γ−n
N−r ◦ HomA(−, A) as functors on C(A), for all A ∈ A, n ∈ Z, and r ∈ {1, . . . ,N − 1}.

(b) In particular, an N-complex X ∈ CN(E) over an exact category E is totally N-acyclic at position
n ∈ Z if and only if γn

r (X) is totally 2-acyclic at n, for all r ∈ {1, . . . ,N − 1}.

Remark 2.5. Let E be an exact category, n ∈ Z, and r ∈ {1, . . . ,N − 1}. Note that Zn
(r)(X) = Zn(γn

r (X))
and Bn

(r)(X) = Bn(γn
N−r(X)) for any sequence X ∈ C(E) if the respective objects exist, see Notation 1.61.

In this case, X is N-acyclic at position n if and only if Zn
(r)(X) = Bn

(N−r)(X) for all r. In particular,
Hn

(r) = Hn ◦ γn
r if E is Abelian and X ∈ CN(E) an N-complex. In this case, X is N-acyclic at position n

if and only if Hn
(r)(X) = 0 for all r.

Lemma 2.6. Consider a termwise short exact sequence X Y Z of N-complexes over an
exact category E. If X, Y, and Z are acyclic at position n ∈ Z, then the induced sequence

Zn
(r)(X) Zn

(r)(Y) Zn
(r)(Z)

is short exact for all r ∈ {1, . . . ,N − 1}. The verbatim statement holds for cokernels instead of kernels.

Proof. Due to Remark 2.5, we may assume that N = 2. There is a commutative diagram

Xn−1 Zn(X) Xn Xn+1

Yn−1 Zn(Y) Yn Yn+1

Zn−1 Zn(Z) Zn Zn+1,

x′

z′ y′ v′

◦

x

p w′

z
y

v

w
◦

◦

where z and z′ are induced on the respective kernels, see Remark 2.7.(b). By Lemma 2.8, z′ is a kernel
of z. Since zp is an admissible epic, so is z due to Proposition 1.10.(b). It follows that
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Zn(X) Zn(Y) Zn(Z)z′ z

is a short exact sequence in E as desired. □

Remark 2.7. Consider a not necessarily commutative diagram

• • •

• • •

e

(X) (Y)

m

in an arbitrary category, and suppose that the outer rectangle (XY) commutes. Then:

(a) If e is an epic and (X) commutes, then (Y) commutes as well.
(b) If m is a monic and (Y) commutes, then (X) commutes as well.

Lemma 2.8. In a category with zero morphisms, consider a commutative diagram

•

• •

• • •

•

x′

y′ x
v′

y

w′

v

w

with ww′ = 0 and x′ and v′ kernels of x and v, respectively. Then y′ is a kernel of y.

Proof. First note that yy′ = vv′x′ = 0 since v′ is a kernel of v. To prove universality, let a be a
morphism with ya = 0. Then 0 = vw′a, and hence w′a = v′b for a unique b since v′ is a kernel of v.
We compute xb = wv′b = ww′a = 0 using ww′ = 0. Hence, b = x′c for a unique c since x′ is a kernel
of x.

•

• • •

• • •

•

x′

y′
a

b

c

c

x
v′

y

w′

v

w

We show that c is the unique morphism with y′c = a as required: Note that w′y′c = v′x′c = v′b = w′a,
which implies y′c = a since w′ is monic. If c′ is an arbitrary morphism with y′c′ = a, then v′x′c′ =
w′y′c′ = w′a. Thus, x′c′ = b, and hence c′ = c by uniqueness of b and c, respectively. □
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Notation 2.9. For N ∈ N≥2, n ∈ Z and, r ∈ {1, . . . ,N − 1}, consider the set

Z = Zn
r := {n + aN + br | a ∈ Z, b ∈ {0, 1}} ⊆ Z

of indices selected by the contraction functor γ := γn
r . Note that for any s ∈ Z the interval [s−N+1, s]

contains exactly two elements ofZ. Denote by γ′ : Z → Z, n+ aN + br 7→ n+ 2a+ b, the reindexing
realized by γ. By abuse of notation, we also write

γ = γn
r : Z −→ Z, s 7−→ γ′(max{k ∈ Z | k ≤ s}),

which extends γ′ to Z.

Remark 2.10. Let E be an exact category, A ∈ E, and s ∈ Z.

(a) Using Notation 2.9, we have γn
r (µs

N(A)) = µγ
n
r (s)

2 (A) for all n ∈ Z and r ∈ {1, . . . ,N − 1}.
(b) Suppose that A , 0. Then the sequence µs

t (A) is (totally) N-acyclic if and only if t = N: Indeed,
γn

r (µs
N(A)) is 2-acyclic for all n ∈ Z and r ∈ {1, . . . ,N−1} due to (a). Then also HomE(µs

N(A), P) =
µ−s+N−1

N (HomE(A, P)) is N-acyclic for any P ∈ Proj(E), see Remark 1.48. Thus, µs
N(A) is even

totally N-acyclic. If t ∈ {1, . . . ,N − 1}, then the 2-complex γs
1(µs

t (A)) = µs
1(A) is clearly not

2-acyclic. So, µs
N(A) is not N-acyclic.

2.2. Cones and extensions. In this subsection, we describe to which extent the cone C( f ) and the
cocone C∗( f ), see Construction 1.31, preserve local N-acyclicity of the source and target of f (Propo-
sition 2.17). This specializes to the suspension functor Σ and its quasi-inverse Σ−1 (Corollary 2.18).
We examine the preservation of local N-acyclicity is preserved under extensions (Proposition 2.13).
Imposing boundedness and acyclicity conditions, defines various extension-closed Frobenius subcat-
egories of CN(E). Their stable categories are related in a diagram of triangulated subcategories of
KN(E) (Theorem 2.20).

Lemma 2.11 ([Büh10, Lem. 10.3]). Let f : X → Y be a morphism of 2-complexes over an exact
category E. If X and Y are acyclic at positions n, n + 1 ∈ Z, then the cone C( f ) of f is acyclic at
position n. Dually, if X and Y are acyclic at positions n − 1, n ∈ Z, then the cocone C∗( f ) of f is
acyclic at position n.

Proof. Although Bühler’s Lemma concerns global acyclicity, his arguments prove our local claim.
The dual statement then follows by Construction 1.58.(c). □

Remark 2.12. If a sequence X ∈ C(E) over an exact category E is N-acyclic at positions n, n+1, . . . , n+
N − 1 ∈ Z, resp. n−N + 1, . . . , n− 1, n ∈ Z, then γn

r (X) is 2-acyclic at positions n, n+ 1, resp. n− 1, n,
for all r ∈ {1, . . . ,N −1}. The verbatim statement for total N-acyclicity follows due to Remark 2.4.(b).

Proposition 2.13. Let X ↣ Y ↠ Z be a termsplit short exact sequence of N-complexes X,Y,Z ∈
CN(E) over an exact category E.

(a) If X is acyclic at positions n, n + 1, . . . , n + N − 1 ∈ Z and and Z is acyclic at positions
n − N + 1, . . . , n − 1, n, then Y is acyclic at position n.
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(b) If X and Z are totally acyclic at positions n−N + 1, . . . , n, . . . , n+N − 1 ∈ Z, then Y is totally
acyclic at position n.

In particular, the subcategories C∞,∅N (E) and C∞,∅
∗

N (E) of (totally) acyclic N-complexes are both
extension-closed in CN(E).

Proof.

(a) By Remark 2.12, the claim reduces to the case N = 2. By hypothesis, there are decompositions
Yk � Xk ⊕ Zk for all k. We can thus write the kth morphism in Y as

dk
Y =

dk
X f k

0 dk
Z


for some morphism f k : Zk → Xk+1 in E. Since Y is a complex, we have

0 = d2
Y =

d2
X dX f + f dZ

0 d2
Z

 .
Consequently, f ◦ (−dZ) = dX ◦ f and Θ−1 f : − Θ−1Z → X is a morphism in CN(E) with

dk
C(Θ−1 f ) =

dk
X (Θ−1 f )k+1

0 −dk+1
−Θ−1Z

 = dk
X f k

0 dk
Z

 = dk
Y .

Since −Θ−1Z and X are acyclic at positions n, n + 1 by hypothesis, Y � C(Θ−1 f ) is acyclic at
position n due to Lemma 2.11.

(b) This follows from (a) applied to the termsplit short exact sequence

HomE(Z, P) HomE(Y, P) HomE(X, P)

for each P ∈ Proj(E). □

Lemma 2.14. If A′ A A′′a′ a is a (split) short exact sequence in an exact category E, then
so are the following sequences:

(a) A′ ⊕ B A ⊕ B A′′

a
′ b

0 idB

 (
a −ab

)
for any morphism b : B→ A in E, and

(b) A′ A ⊕C A′′ ⊕C

 a′

−ca′


a 0

c idC


for any morphism c : A→ C in E.

Proof. The following isomorphisms of short exact sequences in E prove the claims:
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(a)

A′ ⊕ B A ⊕ B A′′

A′ ⊕ B A ⊕ B A′′

a
′ b

0 idB



idA′⊕B

(
a −ab

)

�

idA −b

0 idB

 idA′′

a
′ 0

0 idB


(
a 0

)

(b)

A′ A ⊕C A′′ ⊕C

A′ A ⊕C A′′ ⊕C

 a′

−ca′



idA′

a 0

c idC



�

idA 0

c idC

 idA′′⊕C

a
′

0


a 0

0 idC


□

Construction 2.15. Let f : X → Y be a morphism of N-complexes over an exact category E. Using
γ = γn

r andZ = Zn
r from Notation 2.9, we have, see Construction 1.51 and Remark 2.10.(a),

γIN(X) =
⊕
k∈Z

γ(µk
N(Xk)) =

⊕
k∈Z

µ
γ(k)
2 (Xk),

which is a direct sum of I2(γX) =
⊕

k∈Z µ
γ(k)
2 (Xk) and C =

⊕
k∈Z\Z µ

γ(k)
2 (Xk). This leads to a split

short exact sequence

I2(γX) γIN(X) C
jX qX

with C ∈ Proj(CN(E)) ∩ C∞,∅N (E), see Lemma 1.50 and Remark 2.10.(b). This persists after twisting

the maps by Dk :=


dX
...

d{k}X

 as follows:

jX =


1 0

Dr−1 0
0 1
0 DN−r−1

 and qX =

−Dr−1 Er−1 0
0 0 −DN−r−1 EN−r−1

 .
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Indeed, permuting the direct summands yields

( jX , pX) �

D
E2

 , (EN−2 −D
) , where D :=

Dr−1 0
0 DN−r−1

 .
This is a split short exact sequence due to Lemma 2.14.(a) applied to a′ = 0, b = D and a = EN−2.

With iγX =

 1
d{r}X

 and γiX =

 1
DN−1

, see Constructions 1.31 and 1.51, we obtain

jX ◦ iγX = γiX .

We now apply the exact functor γ to the sequence (S ( f )) and relate the result with (S (γ f )), see
Constructions 1.31 and 1.51. By Lemma 1.15, the commutative square given by the preceding formula
can be extended to the following commutative diagram in CN(E) with termsplit short exact rows and
split columns:

γX I2(γX) ⊕ γY C(γ f )

γX γIN(X) ⊕ γY γC( f )

0 C C

 iγX

−γ f



id

 jX 0

0 idγY

 cX γiXγ(− f )



(
qX 0

)

id

(2.1)

We summarize this result in the following

Lemma 2.16. Let f : X → Y a morphism of N-complexes over an exact category E. Consider the
contraction functor γn

r , for some n ∈ Z and r ∈ {1, . . . ,N − 1}. Then there is a split admissible monic
cX : C(γn

r ( f ))↣ γn
r (C( f )) with cokernel in Proj(CN(E)) ∩ C∞,∅

∗

N (E). In particular:

(a) The morphism cX is an isomorphism in K2(E).
(b) If C(γn

r ( f )) is (totally) 2-acyclic at position n, then so is γn
r (C( f )). □

Proposition 2.17. Let f : X → Y be a morphism of N-complexes over an exact category E. If X and Y
are (totally) N-acyclic at positions n, n + 1, . . . , n + N − 1 ∈ Z, then the cone C( f ) of f is (totally) N-
acyclic at position n. Dually, if X and Y are (totally) N-acyclic at positions n−N +1, . . . , n−1, n ∈ Z,
then the cocone C∗( f ) of f is (totally) N-acyclic at position n.

Proof. By Remark 2.12, γn
r (X) and γn

r (Y) are (totally) 2-acyclic at positions n, n + 1 for all r ∈
{1, . . . ,N−1}. Lemmas 2.11 and 2.16.(b) then yield 2-acyclicity of C(γn

r ( f )), and hence of γn
r (C( f )) at
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position n for all r. This means exactly that C( f ) is N-acyclic at position n. Assuming total acyclicity,
HomE(γn

r (X), P) and HomE(γn
r (Y), P) are 2-acyclic at positions −n − 1,−n for all r and P ∈ Proj(E).

Using Remark 1.53.(b), HomA(C(γn
r ( f )), P) � C∗(HomA(γn

r ( f ), P)) is then 2-acyclic at position −n
by Lemma 2.11. This proves total 2-acyclicity of C(γn

r ( f )), and hence of γn
r (C( f )) at n for all r due to

Lemma 2.16.(b). By Remark 2.4.(b), C( f ) is now totally N-acyclic at position n. □

In view of Construction 1.58.(b), we obtain, as a special case, the following

Corollary 2.18. Let X ∈ CN(E) be an N-complex over an exact category E. If X is (totally) acyclic at
positions n, n + 1, . . . , n + N − 1 ∈ Z, then ΣX is (totally) acyclic at position n. Dually, if X is (totally)
acyclic at positions n − N + 1, . . . , n − 1, n ∈ Z, then Σ−1X is (totally) acyclic at position n. □

Notation 2.19. We use Verdier’s notation for various subcategories of N-complexes:

• For an additive category A, let C−N(A), C+N(A) and Cb
N(A) denote the subcategories of CN(A)

consisting of N-complexes X ∈ CN(A) with Xk = 0 for any sufficiently large, any sufficiently small,
and almost all k ∈ Z, respectively. These subcategories are extension-closed and hence fully exact
in CN(A), see Lemma 1.19.(a). To afford the following notation, we set C∞N (A) := CN(A). For
# ∈ {∞,+,−, b}, the projectively stable category of C#

N(A) is denoted by K#
N(A).

• For an exact category E and # ∈ {∞,+,−, b}, let C#,−
N (E), C#,+

N (E), C#,b
N (E) and C#,∅

N (E) denote
the subcategories of C#

N(E) =: C#,∞
N (E) consisting of N-complexes which are acyclic at all suf-

ficiently large, sufficiently small, almost all, and all positions, respectively. In addition, we de-
note by C#,∅∗

N (E) the subcategory of C#,∅
N (E) consisting of totally acyclic N-complexes. For ♮ ∈

{∞,+,−, b,∅,∅∗}, the associated projectively stable category is denoted by K#,♮
N (A).

• It convenient to use the obvious partial ordering
∞

+ −

b

∅

∅∗.

• Let A be a subcategory of an exact category E. For # ∈ {∞,+,−, b} and ♮ ∈ {∞,+,−, b,∅,∅∗}, we
abbreviate C#,♮E

N (A) := CN(A) ∩ C#,♮
N (E), and denote its projectively stable category by K#,♮E

N (A).
There are two notable special cases:

– APCN(E) := C∞,∅E(Proj(E)), the category of acyclic N-complexes of projectives, and
– TAPCN(E) := C∞,∅

∗
E(Proj(E)), the category of totally acyclic N-complexes of projectives.

They coincide if E is Frobenius, see Remark 2.3.

Theorem 2.20. Let E be an exact category, # ∈ {∞,+,−, b}, and ♮ ∈ {∞,+,−, b,∅,∅∗}.

(a) The subcategory C#,♮
N (E) is extension-closed and hence fully exact in CN(E).

(b) The category C#,♮
N (E) is a sub-Frobenius category of CN(E).

(c) There are the following diagrams of canonical fully faithful, triangulated functors:
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K+N (E)

K
+,∅
N (E) K

+,b
N (E) K

∞,+
N (E)

K
b,∅
N (E) Kb

N(E) K
∞,∅
N (E) K

∞,b
N (E) KN(E)

K
−,∅
N (E) K

−,b
N (E) K

∞,−
N (E)

K−N (E)

K
+,∅∗

N (E) K
+,∅
N (E)

K
b,∅∗
N (E) K

b,∅
N (E) K

∞,∅∗

N (E) K
∞,∅
N (E)

K
−,∅∗

N (E) K
−,∅
N (E)

For a subcategoryA of E, these statements hold more generally with E replaced byA, and ♮ by ♮E.

Proof. Part (a) follows from Lemma 1.19.(a) and Proposition 2.13. For any X ∈ C#,♮
N (E), both I(X)

and P(X) lie in C#,♮
N (E) due to Construction 1.51 and Remark 2.10.(b), and in Proj(CN(E)) due to

Lemma 1.50. Since also ΣX and Σ−1X lie in C#,♮
N (E) due to Construction 1.58.(a) and Corollary 2.18,

the morphisms iX and pX from Construction 1.51 are admissible in C#,♮
N (E), and part (b) follows. In

view of Theorem 1.54, the assumptions of Lemma 1.36.(b) are then satisfied, and part (c) follows.
Intersecting with CN(A), the preceding arguments also prove the more general claims. □

Similar arguments yield

Proposition 2.21. Let E′ be an exact subcategory of E. Consider subcategories A and A′ of E
and E′, respectively, and suppose that A′ is a subcategory of A. Then C#,♮E′

N (A′) is a fully ex-
act sub-Frobenius category of C#,♮E

N (A), and there is a canonical fully faithful, triangulated functor

K
#,♮E′
N (A′)→ K#,♮E

N (A) where # ∈ {∞,+,−, b} and ♮ ∈ {∞,+,−, b,∅,∅∗}. □
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Corollary 2.22. Let E′ be an exact subcategory of E with Proj(E′) ⊆ Proj(E). Then APCN(E′) is a
fully exact sub-Frobenius category of APCN(E) and there is a canonical fully faithful, triangulated
functor APCN(E′)→ APCN(E). The verbatim statement holds for TAPC instead of APC. □

2.3. Acyclic N-arrays. The kernels in an acyclic N-complex can be organized in an array of bi-
cartesian squares. Over an Abelian category, such arrays have been used for instance in [BM24] and
[IKM17]. We build acyclic N-arrays from acyclic N-complexes over an exact category and establish
an equivalence between the respective categories (Theorem 2.26). Our construction is local with re-
spect to the indices of the considered N-complex (Proposition 2.30). As a result, one can define soft
truncations as in the Abelian case (Definition 2.31).

Definition 2.23. A (bicartesian) N-array X•• = (X•• , p
•
•, i
•
•) over an exact category, where X•• =

(Xk
r )k∈Z

r∈{0,...,N}, p•• = (pk
r)k∈Z

r∈{1,...,N} and i•• = (ikr)k∈Z
r∈{0,...,N−1}, is a diagram consisting of (bicartesian) com-

mutative squares

Xk+1
r+1

Xk
r Xk+1

r

Xk
r−1

pk+1
r+1

pk
r

ikr

ikr−1

for k ∈ Z and r ∈ {1, . . . ,N − 1}. We call X•• epic, resp. monic, if pk
r is an admissible epic, resp. ikr an

admissible monic, for all k and r. We call it bounded above, bounded below, or bounded, if Xk
• = 0

for any sufficiently large, any sufficiently small, almost all k ∈ Z, respectively.
A morphism f : X → Y between such arrays is a collection f •• = ( f k

r )k∈Z
r∈{0,...,N} of morphisms f k

r : Xk
r →

Yk
r which establish commutativity. We drop the bullets and write X = (X, p, i) if there is no ambiguity.

Remark 2.24. Any N-array X over an exact category E gives rise to morphisms p{N} : X•N → X•0 and
i{N} : X•0 → X•N in C(E), where dX•0 = pi and dX•N = ip. Note that X•0 , X

•
N ∈ CN(E) if p{N} = 0 or

i{N} = 0.

Definition 2.25. An acyclic N-array (of X•N ∈ CN(E)) over an exact category E is an epic and monic
bicartesian N-array with X•0 = 0, see also [BM24, Def. 4.4]. We denote the category of acyclic
N-arrays over E by AN(E).

Over an Abelian category, Theorem 2.26 can be easily verified as mentioned in [BM24, p. 21].

Theorem 2.26. For an exact category E, the categories AN(E) and C∞,∅N (E) are equivalent. Under
this equivalence, an acyclic N-complex X ∈ C∞,∅N (E) corresponds to an acyclic N-array (Xk

r )k∈Z
r=0,...,N of

X, where Xk
r = Ck

(r)(X) = Zk+N−r
(r) (X) and, in particular, X•N = X.

Notation 2.27.

(a) By A ↪→ B (in contrast to A↣ B), we denote a monic (which might not be admissible).
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(b) By A B (in contrast to A↠ B), we denote an epic (which might not be admissible).

Lemma 2.28. Let E be an exact category.

(a) Suppose that the following diagram (XY) in E is bicartesian:

•

• •

• •

•

(Y)
e

i

(X)

Then (Y) is bicartesian. If e is an admissible epic, then also (X) is bicartesian.

(b) Suppose that the following diagram (Y ′X′) in E is bicartesian:

•

• •

• •

•

p

(Y ′)

(X′)

m

Then (Y ′) is bicartesian. If m is an admissible monic, then also (X′) is bicartesian.

Proof.

(a) As e is an epic, (Y) is a pushout by Lemma 1.3.(a) and hence bicartesian by Corollary 1.13.(a).
As i is a monic, (X) is a pullback by Lemma 1.3.(b) and hence bicartesian by Corollary 1.13.(a)
if e is an admissible epic.

(b) is dual to (a). □

Lemma 2.29. Over an exact category E, consider the commutative diagram
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X0
N X1

N X2
N X3

N · · · XN−3
N XN−2

N XN−1
N XN

N

X0
N−1 X1

N−1 X2
N−1 · · · XN−3

N−1 XN−2
N−1 XN−1

N−1

X0
N−2 X1

N−2
. . .

... XN−3
N−2 XN−2

N−2

X0
N−3

. . . X2
4

... XN−3
N−3

. . . X1
3 X2

3
...

X0
2 X1

2 X2
2

X0
1 X1

1

X0
0 .

For n ∈ {1, . . . ,N − 1} and r ∈ {n, . . . ,N − 1}, let (Yn
r ) denote the square

Xn
r+1

Xn−1
r Xn

r

Xn−1
r−1 .

(Yn
r )

Suppose that for each n ∈ {1, . . . ,N − 1} the concatenation of

(Yn
N−1)

...
. . .

(Y1
N−n) (Yn

n )
. . .

...

(Y1
1 )

is bicartesian. Then each individual square (Yn
r ) is bicartesian with admissible morphisms.

Proof. By Lemma 2.28.(a), the assumption implies that (Yn
N−1 · · · Y

n
n ) bicartesian. We prove the claim

by descending induction on r = N − 1, . . . , n. Starting with r = N − 1, the square (Yn
N−1) is bicartesian

due to Lemma 2.28.(b), and its morphisms are admissible by Corollary 1.13.(b). Let now n, n′ ∈
{1, . . . ,N−1} and r, r′ ∈ {n, . . . ,N−2}, and suppose that the claim holds for (Yn′

r′ ) whenever r′ > r. Then
(Yn

N−1 · · · Y
n
r+1) is bicartesian with admissible morphisms, see Remark 1.2, and the upper morphisms
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of (Yn
r ) are admissible. So, (Yn

r · · · Y
n
n ) is bicartesian by the additional claim of Lemma 2.28.(b). Now

the claim for (Yn
r ) follows from Lemma 2.28.(b) and Corollary 1.13.(b) as before. □

Proposition 2.30. Let X ∈ CN(E) be an N-complex over an exact category E and n ∈ Z. Suppose that
all compositions of differentials between positions in {n, n + 1, . . . , n + N} are admissible.

(a) For each choice Xk
r of (co)images, see Remark 1.39.(b), there is a unique commutative diagram:

Xn Xn+1 Xn+2 · · · Xn+N−2 Xn+N−1 Xn+N

Xn
N−1 Xn+1

N−1 Xn+N−2
N−1 Xn+N−1

N−1

Xn
N−2

. . .
... Xn+N−2

N−2

. . . Xn+1
2

...

Xn
1 Xn+1

1

0

If X acyclic at position k ∈ {n, . . . , n + N}, we have Xk
r = Ck

(r)(X) and Xk−N+r
r = Zk

(r)(X), for all
occurring r. If this holds for all k, then every morphism of such N-complexes induces a unique
morphism of the associated diagrams.

(b) If γn+k
N−k(X) is 2-acyclic at position n+k for each k ∈ {1, . . . ,N−1}, then all squares of the diagram

in in (a) are bicartesian with admissible morphisms. In particular, this holds if X is acyclic at
positions n + 1, . . . , n + N − 1.

Proof.

(a) The morphisms in the diagram exist due to the universal property of (co)images. It commutes
by repeated application of Remark 2.7. The morphisms f k

r : Xk
r → Yk

r induced by f on cokernels
form a morphism of the respective diagrams associated to X and Y . Indeed, using Remark 2.7
multiple times, one verifies that the following diagrams commute for all occurring indices k, r
and s:
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Xk

Xk
r

Yk Xk
s

Yk
r

Yk
s

f k

f k
r

f k
s

Xk Xk+N−r

Xk
r

Yk
r

Yk • Yk+N−r

◦
d{N−r}

X

f k f k+N−rf k
r

d{N−r}
Y
◦

Xk

Xk−N+r
r

Xk−N+s
s Yk

Yk−N+r
r

Yk−N+s
s

f k

f k−N+r
r

f k−N+s
s

(b) By hypothesis, Xn
N−k Xn+k Xn+k

k is short exact, and hence

Xn+k

Xn
N−k Xn+k

k

0
is bicartesian for all k ∈ {1, . . . ,N − 1} by Proposition 1.12. Lemma 2.29 yields the claim. □

Proof of Theorem 2.26. Given an acyclic N-array X, the sequences Xn−r
N−r Xn

N Xn
r are exact for

all n and r by Proposition 1.12. So, X•N is an acyclic N-complex, see Remark 2.24, with Cn
(r)(X

•
N) =

Zn+N−r
(r) (X•N) = Xn

r for all n and r. This yields a functor AN(E) → C∞,∅N (E) which sends a morphism
f : X → Y in AN(E) to the morphism f •N : X•N → Y•N in CN(E).
To show essential surjectivity, let X ∈ C∞,∅N (E) be an acyclic N-complex. Apply Proposition 2.30 for
all n ∈ Z with a fixed choice of all (co)images. The respective diagrams patch together to form an
acyclic N-array, sent to X under the above functor. Fullness follows from Proposition 2.30 as well. To
see that the functor is faithful, suppose that f n

N = 0 for all n ∈ Z. Then the commutative diagram

Xn
N Xn

r

Yn
N Yn

r

f n
N

0 f n
r

shows that f n
r = 0 for all n and r. □

Based on Proposition 2.30, we define soft truncations. For convenience, we impose slightly stronger
acyclicity hypotheses than necessary.

Definition 2.31. Let X ∈ CN(E) be an N-complex over an exact category E and n ∈ Z.

(a) If X is acyclic at positions n, . . . , n + N − 2, its (left) soft truncation is the N-complex

σ≥nX : Cn
(1) · · · Cn+N−2

(N−1) Xn+N−1 Xn+N Xn+N+1 · · · .
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Note that Cn+r−1
(r) (X) = Zn+N−1

(r) (X) for all r ∈ {1, . . . ,N − 1} if X is acyclic also at position
n + N − 1.

(b) If X is acyclic at positions n − N + 2, . . . , n, its (right) soft truncation is the N-complex

σ≤nX : · · · Xn−N−1 Xn−N Xn−N+1 Zn−N+2
(N−1) · · · Zn

(1).

Note that Zn−r+1(X) = Cn−N+1
(r) (X) for all r ∈ {1, . . . ,N − 1} if X is acyclic also at position

n − N + 1.

Corollary 2.32. Let X ∈ CN(E) be an N-complex over an exact category E and n ∈ Z.

(a) If X is acyclic at all positions greater than or equal to n, then σ≥nX is acyclic. Dually, if X is
acyclic at all positions up to n, then σ≤nX is acyclic.

(b) If X is acyclic at positions n − N + 1, . . . , n + 1 ∈ Z, then there is a termwise short exact
sequence of N-complexes

σ≤nX : · · · Xn−N+1 Xn−N+1
N−1 · · · Xn−N+1

1 0 · · ·

X : · · · Xn−N+1 Xn−N+2 · · · Xn Xn+1 · · ·

σ≥n−N+2X : · · · 0 Xn−N+2
1 · · · Xn

N−1 Xn+1 · · · ,

id

id

where Xk
r = Ck

(r)(X) = Zk+N−r
(r) (X) for all occurring indices k and r.

Proof. Part (b) is obvious from the definitions. To see (a), patch all diagrams that can be obtained
from Proposition 2.30, as in the proof of Theorem 2.26. Then modify the resulting diagram at the left
end as follows, and extend it by zero to create an acyclic N-array of σ≥nX:

Xn
1 Xn+1

2 Xn+2
3 · · · Xn+N−3

N−2 Xn+N−2
N−1 Xn+N−1 Xn+N · · ·

Xn
1 Xn+1

2 Xn+N−3
N−2 Xn+N−2

N−1 Xn+N−1
N−1

. . .

Xn
1

. . .
... Xn+N−3

N−2 Xn+N−2
N−2

. . .

. . . Xn+1
2

... Xn+N−3
N−3

. . .

Xn
1 Xn+1

2

...
. . .

Xn
1 Xn+1

1

...

0 0

The claimed acyclicity follows from Theorem 2.26. □
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2.4. Resolutions of N-complexes. Keller described (injective) resolutions of 2-complexes over an
exact category E which are bounded on one side, see [Kel90, 4.1, Lemma]. In this subsection we
generalize his approach to construct projectively resolving N-arrays, which then yield projective N-
resolutions (Corollary 2.43). For elements of Morm

N−2(E), see Notation 1.69, such resolutions take the
form of one-sided acyclic N-arrays (Corollary 2.38).

Definition 2.33. Let E be an exact category.

(a) We refer to an epic bicartesian N-array (X, p, i) over E with i{N} = 0 as a resolving N-array
(of X•0 ∈ CN(E)). We call it projectively resolving if X•N ∈ CN(Proj(E)), see Remark 2.24.

(b) We refer to a monic bicartesian N-array (X, p, i) over E with p{N} = 0 as a coresolving N-
array (of X•0 ∈ CN(E)). We call it injectively coresolving if X•0 ∈ CN(Inj(E)), see Re-
mark 2.24.

In the following, we consider only (projectively) resolving N-arrays. However, there are obvious dual
statements on (injectively) coresolving N-arrays.

Proposition 2.34. Let E be an exact category with enough projectives. Then any bounded above
N-complex over E admits a bounded above, projectively resolving N-array.

The proof relies on the following argument of Keller:

Lemma 2.35. Consider a commutative diagram

• •

• ⋄ • ⋄ •

• • •

b d

b′

a′

d′

c′

e′

j a

e

c

of two bicartesian squares in an additive category. If c′a = 0 and ee′ = 0, then there exists a morphism
j completing the diagram with a′ j = 0.

Proof. Interpreting the bicartesian squares as short exact sequences as in Proposition 1.12.(b), the
hypotheses yield c′d′

 (−b a
) 0e′
 = c′ae′

d′ae′

 = c′ae′

ee′

 = 0,

and hence
(
−b a

) 0e′
 = 0, since

c′d′
 is a monic. Then j exists by the universal property of pullbacks.

□

Proof of Proposition 2.34. Let X ∈ C−N(E), and set m := max{k ∈ Z | Xk , 0}. We construct a
projectively resolving N-array X•• of X as follows:
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X
k N

X
k+

1
N

X
k+

2
N

··
·

X
m
−

3
N

X
m
−

2
N

X
m
−

1
N

X
m N

X
k N
−

1
(Y

k+
1

N
−

1)
X

k+
1

N
−

1

. . .

X
m
−

2
N
−

1
(Y

m
−

1
N
−

1
)

X
m
−

1
N
−

1
(Y

m N
−

1)
X

m

X
k N
−

2
. .
.

. . .

X
m
−

2
N
−

2
(Y

m
−

1
N
−

2
)

X
m
−

1
. .
.

. .
.

X
k+

1
3

. . .

X
m
−

2
. .
.

X
m

. .
.

X
k 2

(Y
k+

1
2

)
X

k+
1

2
. .
.

. . .

. .
.

X
m
−

1
(Y

m 2
)

X
m

X
k−

1
1

(Y
k 1
)

X
k 1

(Y
k+

1
1

)
X

k+
1

1
X

m
−

N
+

2
. .
.

X
m
−

2
(Y

m
−

1
1

)
X

m
−

1
(Y

m 1
)

X
m

··
·

X
k−

2
X

k−
1

X
k

X
k+

1
··
·

X
m
−

N
+

1
··
·

X
m
−

3
X

m
−

2
X

m
−

1
X

m

Figure 1. Keller’s resolution for general N
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For all k > m and r ∈ {1, . . . ,N − 1}, set Xk
r := 0. Fix n ∈ Z≤m and assume that (Yk

r ) has already been
constructed for r ∈ {1, . . . ,N} and k > n. Consider the following diagram joining the concatenated
bicartesian squares (Yn+1

1 · · · Yn+N−1
N−1 ) and (Yn+N

N−1 · · · Y
n+N
1 ), see Remark 1.2:

Xn+N−1
N Xn+N

N

Xn+N−1
N−1

Xn
1 Xn+N

1

Xn−1 Xn Xn+N−1

pn+N−1
N ∏N

l=2 pn+N
l

in+N−1
N−1

∏N−1
l=1 pn+N−1

l

∏1
l=N−1 in−1+l

l

pn
1

in−1
0

dn−1 d{N−1}

∏0
l=N−2 in+l

l

in+N−1
0

Then the morphism in−1
0 exists due to Lemma 2.35. The squares (Yn

r ) can now be defined by successive
pullbacks for increasing r = 1, . . . ,N − 1. To complete the induction step, we pick an admissible epic
pn−1

N : Xn−1
N ↠ Xn−1

N−1 with Xn−1
N ∈ Proj(E). □

Remark 2.36. Let X be a (projectively) resolving N-array over an exact category E. Pick n ∈ Z and
r ∈ {1, . . . ,N − 1}. Then suitably composing morphisms in X yields a (projectively) resolving 2-array
of γn

r (X•0), as constructed by Keller:

· · · Xn−N+r
N Xn

N Xn+r
N Xn+N

N · · ·

· · · Xn−N+r
r Xn

N−r Xn+r
r · · ·

· · · Xn−N
0 Xn−N+r

0 Xn
0 Xn+r

0 · · ·

d{N−r}
XN

d{r}XN
d{N−r}

XN

d{r}
X•0

d{N−r}
X•0

d{r}
X•0

Remark 2.37. Let X•• and Y•• be resolving N-arrays of N-complexes X and Y , respectively, over an
exact category E. Suppose X•• is projectively resolving and one of X•• and Y•• is bounded above. Then
any morphism X → Y in CN(E) lifts to a morphism X•• → Y•• , which in turn induces a morphism X•N →
Y•N in CN(E): Due to boundedness, the morphism Xk

r → Yk
r must be zero, for any sufficiently large

k ∈ Z. The remaining morphisms exist exist due to functoriality of pullbacks for r ∈ {1, . . . ,N − 1},
and due to projectivity for r = N.

Combining the proof of Proposition 2.34 with Propositions 1.12 and 1.14 yields

Corollary 2.38. Let E be an exact category with enough projectives and X ∈ Morm
N−2(E). Then ι0X,

see Notation 1.69, admits a projectively resolving N-array which can be modified into a one-sided
N-acyclic array as follows:
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· · · X−N+1
N X−N+2

N X−N+3
N · · · X−1

N X0
N

X−N+1
N−1 X−N+2

N−1 X−1
N−1 XN−1

... X−N+1
N−2

. . .
... XN−2

...
. . . X−N+2

2
...

X−N+1
1 X1

0 0 0

In particular, X can be recovered as a cokernel in MorN−2(E) of the morphism

X−N+1
N X−N+1

N · · · X−N+1
N X−N+1

N

X−N+2
N X−N+3

N · · · X−1
N X0

N .

The obvious dual statements hold for elements of More
N−2(E). □

Remark 2.39. In the situation of Corollary 2.38, the induced morphism X•N → Y•N in Remark 2.37 can
be considered as a lift of a morphism X → Y in Morm

N−2(E).

Proposition 2.40. Let E be an exact category with enough projectives. For each X ∈ Morm
N−2(E),

choose an N-complex X•N ∈ C
−
N(Proj(E)) as in Corollary 2.38. Then morphisms lift uniquely up to

homotopy from Morm
N−2(E) to C−N(Proj(E)), see Remark 2.39. This defines a fully faithful functor

ρ : Morm
N−2(E)→ K−N (Proj(E)), see Theorem 1.65.

Proof. Let f : X → Y be a morphism in Morm
N−2(E). Denote by X•• and Y•• = (Y•• , q

•
•, j••) the respective

projectively resolving admissible N-arrays from Corollary 2.38 with X•N = ρ(X) =: P and Y•N =
ρ(Y) =: Q. Consider a lift g : P → Q of f in CN(E). To prove its uniqueness up to homotopy, we
suppose that f = 0 and show that g is null-homotopic. To this end, set hk := 0 for k > 0, fix n ≤ 0, and
assume for all k > n that hk : Pk → Qk−N+1 is already defined such that gk =

∑N−1
r=0 d{N−r−1}

Q hk+rd{r}P .

To construct hn set g̃n := gn −
∑N−1

r=1 d{N−r−1}
Q hn+rd{r}P . We claim that qn

N g̃n = 0. If n = 0, then
qn

N g̃n = qn
Ngn = f N−1 pn

N = 0 as f = 0. Otherwise, jnN−1 is a monic, and we verify the equivalent claim
dQg̃n = jnN−1qn

N g̃n = 0:
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dQ

N−1∑
r=1

d{N−r−1}
Q hn+rd{r}P

 = N−1∑
r=1

d{N−r}
Q hn+rd{r}P =

N−2∑
r=0

d{N−r−1}
Q h(n+1)+rd{r}P

 dP

=
(
gn+1 − hr+Nd{N−1}

P

)
dP = gn+1dP = dQgn

It follows that g̃n factors through the kernel jn−1
N−1 · · · jn−N+1

1 of qn
N , that is, g̃n = jn−1

N−1 · · · jn−N+1
1 h̃n for

some h̃n : Pn → Yn−N+1
1 . Projectivity of Pn yields a lift hn : Pn → Qn−N+1 such that qn−N+1

2 · · · qn−N+1
N hn =

h̃n. In conclusion, g is null-homotopic as desired:

gn = g̃n +

N−1∑
r=1

d{N−r−1}
Q hn+rd{r}P = jn−1

N−1 · · · jn−N+1
1 qn−N+1

2 · · · qn−N+1
N hn +

N−1∑
r=1

d{N−r−1}
Q hn+rd{r}P

= d{N−1}
Q hn +

N−1∑
r=1

d{N−r−1}
Q hn+rd{r}P =

N−1∑
r=0

d{N−r−1}
Q hn+rd{r}P

Therefore, up to homotopy the unique lift of the sum of two morphisms equals the sum of the re-
spective unique lifts, and the unique lift of a composition equals the composition of the unique lifts.
This makes ρ a full (additive) functor. For faithfulness, suppose that g factors through I(P), see Re-
mark 1.27.(a). Due to Corollary 2.38, f r : Xr → Yr factors through the cokernel of d{r}I(P) : I(P)−N+1 →

I(P)r−N+1. This cokernel is zero, since Pk = 0 for k > 0, see Construction 1.51. □

Definition 2.41. Let f : X → Y be a morphism of N-complexes over an exact category E. We call
both f and X a resolution (of Y) if the cone C( f ) is N-acyclic, and projective if X ∈ CN(Proj(E)). We
call f and Y a coresolution (of X) if the cocone C∗( f ) is N-acyclic, and injective if Y ∈ CN(Inj(E)).

Proposition 2.42. Let (X, p, i) be a resolving N-array over an exact category E. Then p{N} : X•N → X•0
is a resolution, see Remark 2.24. The acyclic N-array (C, q, j) of its cone C(p{N}) is given by Cn

r :=
Xn+N−r

N−r ⊕
⊕N−1

k=N−r+1 Xn+k
N ,

qn
r =

 i p{r−1} 0
0 0 Er−2

 : Cn
r ↠ Cn

r−1, jnr =


p 0 · · · 0
0 Er−1

−i{r} −d{r−1}
X•N

· · · −dX•N

 : Cn
r ↣ Cn+1

r+1 ,

written in the spirit of Notations 1.20 and 1.57.

Proof. Note that Cn
N = C(p{N})n for all n, see Construction 1.58.(a). For the commutativity of the

squares

Cn+1
r+1

Cn
r Cn+1

r

Cn
r−1,

qn+1
r+1jnr

qn
r jnr−1
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we verify the equation qn+1
r+1 jnr = jnr−1qn

r in matrix form for all n and r, using the commutativity of the
N-array X and dX•N = ip, see Remark 2.24:



ip p{r} 0 · · · 0
0 0
...

... Er−2

0 0
−i{r} −d{r−1}

X•N
−d{r−2}

X•N
· · · −dX•N


=



pi p{r} 0 · · · 0
0 0
...

... Er−2

0 0
−i{r} −i{r−1}p{r−1} −d{r−2}

X•N
· · · −dX•N


.

For r = N, this specializes to dn
C(p{N})

= jnN−1qn
N , see Construction 1.58.(a). Due to Proposition 2.30.(b),

it remains to prove that the sequence Cn−N+r
r C(p{N})n Cn

N−r
j{N−r} q{r}

in E is short exact for all
n and r. In explicit terms, this sequence reads

Xn
N−r ⊕

⊕r−1
k=1 Xn+k

N Xn
0 ⊕
⊕N−1

k=1 Xn+k
N Xn+r

r ⊕
⊕N−1

k=r+1 Xn+k
N .

j{N−r} q{r}

Using the commutativity of X again, one computes that

j{N−r} =

r∏
k=N−1

jn−N+k
k =



p{N−r} 0 · · · 0
0
... Er−1

0
−i{r} −d{r−1}

X•N
· · · −dX•N

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


and

q{r} =
0∏

k=r−1

qn
N−k =


i{r} p{N−r}d{r−1}

X•N
p{N−r}d{r−2}

X•N
· · · p{N−r}dX•N p{N−r} 0 · · · 0

0 0 0 · · · 0 0
...

...
...

. . .
...

... EN−r−1

0 0 0 · · · 0 0


.

The context for the morphisms in the these matrices is provided by the following excerpt of X, see
Remark 1.2:
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Xn
N · · · Xn+r

N · · · Xn+N
N

Xn
N−r ⋄ Xn+r

r

Xn
0

p{r}

dX•N
dX•N

p{N−r}

dX•N
dX•N

p{N−r}

i{r} i{N−r}

i{r}

By Proposition 1.12.(b), a′ :=

p{N−r}

−i{r}

 and a :=
(
i{r} p{N−r}

)
define a short exact sequence (a′, a)

with

−ab =
(
p{N−r}d{r−1}

X•N
p{N−r}d{r−2}

X•N
· · · p{N−r}dX•N

)
for b :=

 0 · · · 0
−d{r−1}

X•N
· · · −dX•N

 .
Now move the (r + 1)st row of j{N−r} and the (r + 1)st column of q{r} to the respective second position.
Then applying Lemma 2.14.(a), followed by Lemma 2.14.(b) with c = 0, yields the claim. □

Combining Propositions 2.34 and 2.42 yields

Corollary 2.43. Every N-complex X ∈ C−N(E) over an exact category E admits a projective resolution
P→ X with P ∈ C−N(Proj(E)). □

2.5. N-syzygies. Syzygies of 2-complexes consist of single objects of the base exact category E =
Morm

0 (E). It seems natural to define the syzygy ΩnX of an N-complex X at position n as an ele-
ment of Morm

N−2(E). In this subsection, we prove that these N-syzygies induce a triangle equivalence
Ωn : APCN(F ) → Morm

N−2(F ) of stable categories, for any Frobenius category F . The required
essential surjectivity is given by a complete resolution. This is constructed by patching the one-sided
N-array from Corollary 2.38 together with a dual one-sided N-array.

Brightbill and Miemietz [BM24] establish this equivalence in a setup, where F is a Frobenius sub-
category of an Abelian category E with Proj(F ) = Proj(E), see Assumption 3.33. Propositions 2.45,
2.47, and Theorem 2.50 correspond to [BM24, Props. 4.7, 4.3, 4.5, Thm. 4.12].

Definition 2.44. Let X ∈ CN(E) be an N-complex over an exact category E and n ∈ Z. Suppose that
X is acyclic at positions n − N + 1, . . . , n − 1. We define the syzygy of X at position n as the unique
object ΩnX := Ωn

E
X ∈ Morm

N−2(E) with ιn−1ΩnX = τ≤n−1σ≥n−N+1X, see Definition 2.31.(a). In explicit
terms, this reads

ΩnX : Xn−N+1
1 Xn−N+2

2 · · · Xn−1
N−1,

where Xk
r = Ck

(r)(X) for all occurring indices k and r. Recall that Xk
r = Zn

(r)(X) for r ∈ {1, . . . ,N − 1} if
X is acyclic at position n. This gives rise to a functor C∞,∅N (E)→ Morm

N−2(E).

To show exactness ofΩn, the proof of [BM24, Prop. 4.7] uses the snake lemma in an Abelian category
E, which is not available in general exact categories. However, Lemma 2.6 serves as a replacement.
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Proposition 2.45. Let E be an exact category. The functor Ωn : C∞,∅N (E) → Morm
N−2(E) is exact for

all n ∈ Z.

Proof. Due to the termwise exact structure of Morm
N−2(E), exactness of Ωn is equivalent to exactness

of Cn−r
(N−r), for all r ∈ {1, . . . ,N − 1}. Hence, the claim follows from Lemma 2.6 □

Definition 2.46. Let E be an exact category and X ∈ Morm
N−2(E). A complete resolution of X is an

object P ∈ TAPCN(E) with Ω1(P) = X.

Over a Frobenius category F , TAPCN(F ) = APCN(F ), see Notation 2.19, and Proposition 2.47
establishes the existence of complete resolutions. The use of Proposition 1.14 in Corollary 2.38 allows
us to extend the arguments of [BM24, Prop. 4.5] from the case where E is Abelian.

Proposition 2.47. If F is a Frobenius category, then Ωn restricts to an essentially surjective and full
functor APCN(F )→ Morm

N−2(F ), for all n ∈ Z.

Proof. We may assume that n = 1. For essential surjectivity, consider an arbitrary object

X1 X2 · · · XN−2 XN−1

of Morm
N−2(F ). In view of Theorem 2.26, it suffices to construct an acyclic N-array X•• ∈ AN(F ) with

Xk
N ∈ Proj(F ) = Inj(F ), for all k ∈ Z, and X−N+r+1

r = Xr, for all r ∈ {1, . . . ,N − 1}. Corollary 2.38
yields the “left half” of the desired array. To complete the array we apply the dual construction to the
element

X−N+2
N−1 X−N+2

N−2 · · · X−N+2
2 X1

of More
N−2(F ) using the already constructed bicartesian squares and projective-injectives. In view of

2.26, fullness follows from Remark 2.37 and its dual. □

Remark 2.48. For an object A of an exact category E,

Ωnµs
N(A) =

0, if n > s or n ≤ s − N + 1,

µN+n−s−1(A), otherwise,

which is an object of Morsm
N−2(E), see Remark 1.62 and Notation 1.70.

Lemma 2.49. Let E be an exact category and Q ∈ APCN(E). Then ΩnP(Q) ∈ Proj(Morm
N−2(E)) for

all n ∈ Z, see Construction 1.51. In particular, Ωn = Ωn
E

induces a unique functor Ωn = Ωn
E

of stable
categories:

APCN(E) Morm
N−2(E)

APCN(E) Morm
N−2(E)

Ωn
E

Ωn
E
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Proof. Using Remark 2.48, we find that ΩnP(Q) ∈ Morsm
N−2(Proj(E)) = Proj

(
Morm

N−2(E)
)
, see Con-

struction 1.51 and Theorem 1.71.(b). The particular claim follows using Remark 1.27.(a) and Con-
struction 1.51. □

Brightbill and Miemietz show in [BM24, §4.2] that Ωn
F

is faithful in their setup. They construct a
null-homotopy for a morphism f : P→ Q in APCN(F ) by lifting a factorization of Ωn( f ) through an
element of Proj(Morm

N−2(F )). The quotient objects in their proof, formed in the ambient Abelian cat-
egory, occur in the acyclic N-arrays of P and Q, see Theorem 2.26. So, their argument works almost
verbatim in our setup Combining this with Propositions 2.45 and 2.47, Lemma 2.49 and Proposi-
tion 1.35 yields

Theorem 2.50. If F is Frobenius category, then the functor Ωn : APCN(F ) → Morm
N−2(F ) is a

triangle equivalence for all n ∈ Z. □

3. Stabilized N-derived categories

In this section, we complete the diagram in Theorem A by the (stabilized) N-derived category and
establish the two remaining (stabilized) functors ι0 and τ≤0. Along the way we provide analogues of
known results on 2-derived categories for general N. The proof that the stabilized truncation τ≤0 is a
triangle equivalence occupies a substantial part of this section.

3.1. N-derived categories. In this subsection, we consider the N-derived category DN(E) of an ex-
act idempotent complete category E and its subcategories D#,♮

N (E) given by boundedness conditions.
These are defined as Verdier quotients of the corresponding homotopy categories K#,♮

N (E) by their
respective triangulated subcategory K#,∅

N (E) of acyclic N-complexes. We establish several fundamen-
tal properties known from the classical case, where N = 2 and E is Abelian. The case N = 2 was
considered by Keller [Kel96], the Abelian case by Iyama, Kato and Miyachi [IKM17]. Like Keller,
we impose idempotent completeness of E to ensure that N-acyclicity is preserved under homotopy
equivalence. Notably, we obtain canonical inclusions Morm

N−2(E) ⊆ Db
N(E) ⊆ D#

N(E) ⊆ DN(E) as
triangulated subcategories and triangle equivalences D−N(E) ≃ K−N (Proj(E)) and Db

N(E) ≃ D−,bN (E) ≃
K
−,bE
N (Proj(E)). Finally, we relate syzygies to truncations of N-complexes inD−,bN (E), a key ingredient

for the proof of Theorem A.

Bühler proves Proposition 3.1, proposed by Keller, for N = 2, see [Büh10, Prop. 10.9]. We adapt his
arguments for general N.

Proposition 3.1. The following conditions are equivalent for any exact category E:

(1) Every null-homotopic N-complex in CN(E) is acyclic.
(2) The category E is idempotent complete.
(3) If a morphism X → Y in KN(E) admits a left-inverse and Y is acyclic at position n ∈ Z, then

so is X.

In particular, the full, but not essential, image of K∞,∅N (E) in KN(E) is thick if and only if E is idem-
potent complete.
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Proof.

(3)⇒ (1) If X ∈ CN(E) is null-homotopic, then there is an isomorphism X → 0 in KN(E), see Defini-
tion 1.66. As the zero N-complex is acyclic, (3) implies that X is so as well.

(1)⇒ (2) For an idempotent e : A→ A in E, consider the N-complex

X : · · · X0 X1 X2 · · · XN XN+1 XN+2 · · ·
id e 1−e id id e 1−e id

where Xi = A for all i ∈ Z. One can see that the morphism idX is null-homotopic with
homotopy h defined by hi = idA. So, X is acyclic by (1) and e splits with kernel Z0

(1)(X), see
Definition 1.75.

(2)⇒ (3) Let s : X → Y be a morphism in CN(E) with left-inverse r : Y → X in KN(E). This means
that rs − idX factors in CN(E) through i = iX : X ↣ I(X), see Remark 1.27.(a) and Con-
struction 1.51:

X X

I(X)

rs− idX

i f

Equivalently, the morphism

is
 : X → I(X)⊕Y , has the left-inverse

(
− f r

)
: I(X)⊕Y → X

in CN(E). Suppose that Y and hence I(X) ⊕ Y is acyclic at position n, see Remark 2.10.(b)

and Proposition 1.8. Replacing s by

is
 we may assume that s has a left inverse r : Y → X

in CN(E). Due to (2), Lemma 3.2 applies to the idempotent e := sr : Y → Y and shows that
X �CN (E) eY is acyclic at position n, see Remark 1.76.

The particular claim follows since thickness follows from (3) and implies (1). □

Lemma 3.2. Consider an idempotent e : X → X of an N-complex X over an exact idempotent com-
plete category E. If X is acyclic at position n ∈ Z, then so is eX, see Proposition 1.81.(a).

Proof. By applying the contraction functors γn
r for r ∈ {1, . . . ,N − 1}, we may assume that N = 2.

There are induced idempotents en on Zn = Zn(X) and Cn = Cn(X), see Remark 1.79, and the diagram

Xn−1 Xn Xn+1

Zn Cn

Zn Cn

Xn−1 Xn Xn+1

dn−1
◦

en−1

dn
◦

en en+1en en

dn−1
◦

dn
◦

commutes, see Remark 2.7. Applying Lemma 1.80 and its dual yields a commutative diagram
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enCn

en−1Xn−1 enXn en+1Xn+1

enZn Cn

Xn−1 Xn Xn+1

Zn (1 − en)Cn

(1 − en−1)Xn−1 (1 − en)Xn (1 − en+1)Xn+1

(1 − en)Zn

such that all sequences • • • are short exact. This implies the claim. □

Corollary 3.3. If f : X → Y is a resolution over an exact idempotent complete category E with
X ∈ C−N(Proj(E)) and Y ∈ C−,bN (E), then X ∈ C−,bEN (Proj(E)).

Proof. AsK−,bN (E) is a triangulated subcategory ofK−N (E), see Theorem 2.20.(c), and C( f ) ∈ C−,∅N (E) ⊆
C
−,b
N (E), this implies that X is isomorphic inKN(E) to a complex inC−,bN (E) and hence lies inC−,bEN (Proj(E))

by Proposition 3.1.(3). □

Corollary 3.4. Let E be an exact idempotent complete category and #, #′ ∈∈ {∞,−, b} and ♮, ♮′ ∈
{∞,−, b,∅} with (#′, ♮′) ≤ (#, ♮). Then K#′,♮′

N (E) = K#′,♮
N (E) ∩ K#,♮′

N (E) as subcategories of K#,♮
N (E).

Proof. Let X ∈ K#′,♮
N (E) ∩ K#,♮′

N (E). This means that X is isomorphic in KN(E) to both an object
Z ∈ C#′,♮

N (E) and Y ∈ C#,♮′

N (E). Proposition 3.1.(3) applied to Z �KN (E) Y yields that Z ∈ C#′,♮
N (E) ∩

C
∞,♮′

N (E) = C#′,♮′

N (E). So, X �KN (E) Z lies in the subcategory K#′,♮′

N (E) of KN(E). The converse
inclusion is obvious. □

Definition 3.5. The N-derived categories of an exact idempotent complete category E are defined
as the Verdier quotients D#,♮

N (E) := K#,♮
N (E)/K#,∅

N (E), for # ∈ {∞,+,−, b} and ♮ ∈ {∞,+,−, b}. A
morphism in CN(E) is called an (N-)quasi-isomorphism if it is an isomorphism inDN(E).

Lemma 3.6. Let E′ be an exact subcategory of an exact idempotent complete category E. Then there
is a canonical triangle functorD#,♮

N (E′)→ D#,♮
N (E), for # ∈ {∞,+,−, b} and ♮ ∈ {∞,+,−, b}.

Proof. This follows from the universal property of the Verdier quotient, since the fully faithful functor
triangle K#,♮

N (E′)→ K#,♮
N (E) from Proposition 2.21 sends K#,∅

N (E′) to K#,∅
N (E). □

Due to the particular statement of Proposition 3.1, Proposition 3.7 is a special case of a general fact
on Verdier quotients, see [Nee01, Prop. 2.1.35].
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Proposition 3.7. Over an exact idempotent complete category, resolutions of N-complexes agree with
N-quasi-isomorphisms. □

Henrard and van Roosmalen [HR20] consider 2-complexes over (more general) deflation-exact cate-
gories. We reduce the claim of Lemma 3.8 to their argument by contraction.

Lemma 3.8. Over an exact idempotent complete category E, any termwise short exact sequence

X Y Z
f g

in CN(E), see Remark 1.22, induces a distinguished triangle inDN(E):

X Y Z ΣX
f g

Proof. The morphism f fits into the distinguished triangle T ( f )

X Y C( f ) ΣX
f w

in KN(E) and hence inDN(E), see Construction 1.31. Since g f = 0, there is a morphism

X I(X) ⊕ Y C( f )

X Y Z

iXf


idX

(
0 idY

)
h f

f g

(3.1)

of termwise short exact sequences in E, see Constructions 1.31 and 1.51. We claim that the cone C(h f )
is N-acyclic. Then h f is an N-quasi-isomorphism, see Proposition 3.7, and the isomorphism

X Y C( f ) ΣX

X Y Z ΣX

f

id id

w

h f id

f g w ◦ h−1
f

of candidate triangles inDN(E) yields the claim. Henrard and van Roosmalen prove this statement in
[HR20, Prop. 3.23] for N = 2. In particular, C(hγ f ) is 2-acyclic, where γ := γn

r for arbitrary n ∈ Z
and r ∈ {1, . . . ,N − 1}. We show that C(hγ f ) � C(γh f ) inK2(E). Then 2-acyclicity of γC(h f ) and thus
N-acyclicity of C(h f ) follow from Lemma 2.16.(b) and Proposition 3.1.(3).
To this end, we apply γ to (3.1) and combine the result with (2.1), see Construction 2.15. This leads
to a commutative diagram

γX I(γX) ⊕ γY C(γ f )

γX γI(X) ⊕ γY γC( f )

γX γY γZ

idid cX

hγ f

id γh f

γ f γg
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in C2(E) with termwise short exact rows. Indeed, hγ f = γh f ◦cX by the universal property of cokernel.
The isomorphism cX in K2(E) from Lemma 2.16.(a) then fits into an isomorphism

C(γ f ) γZ C(hγ f ) ΣC(γ f )

γC( f ) γZ C(γh f ) Σ(γC( f ))

hγ f

cX id � ΣcX

γh f

of distinguished triangles in K2(E), which yields the claim. □

We now prove Theorems B and C.

Theorem 3.9. For an exact idempotent complete category E, there is a diagram of canonical fully
faithful, triangle functors and equivalences:

D+N(E)

D
+,b
N (E) D

∞,+
N (E)

Db
N(E) D

∞,b
N (E) DN(E)

D
−,b
N (E) D

∞,−
N (E)

D−N(E)

≃

≃≃

≃≃

≃

Proof. By symmetry, it suffices to consider the arrows pointing upwards. Let #, #′, ♮, ♮′ ∈ {∞,−, b}
with (#′, ♮′) ≤ (#, ♮). We use Theorem 1.87.(c) to establish the functor D#′,♮′

N (E) → D
#,♮
N (E). By

Theorem 2.20.(c) and Corollary 3.4, U := K#′,♮′

N (E), V := K#,∅
N (E), and U ∩ V = K#′,∅

N (E) are
triangulated subcategories of T := K#,♮

N (E). Condition (3) in Theorem 1.87 holds trivially if #′ = #,
since U ∩ V = V. For the functor D−N(E) → D∞,−N (E), consider a morphism X → Y in T with
X ∈ C−N(E) and Y ∈ C∞,∅N (E). For any sufficiently large n ∈ Z, it factors through the canonical
morphism σ≤nY → Y with σ≤nY ∈ C−,∅N (E) by Corollary 2.32. To show its essential surjectivity,
let X ∈ C∞,−N (E). Due to Corollary 2.32 and Lemma 3.8, for sufficiently large n ∈ Z, there is a
distinguished triangle

σ≤nX X σ≥n−N+2X Σσ≤nX

in D∞,−N (E) with σ≥n−N+2X = 0 ∈ D−,bN (E) and hence X � σ≤nX ∈ D−N(E). The preceding arguments
restrict toD−,bN (E)→ D∞,bN (E) andDb

N(E)→ D+,bN (E). □
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Lemma 3.10. Let X,Y ∈ CN(E) be N-complexes over an exact idempotent complete category E. Then
the canonical functor KN(E) → DN(E) induces an isomorphism HomKN (E)(X,Y) � HomDN (E)(X,Y)
of Abelian groups if X ∈ C−N(Proj(E)) or Y ∈ C+N(Inj(E)).

Proof. If E is Abelian, HomKN (E)(X,K
∞,∅
N (E)) = 0 if X ∈ C−N(Proj(E)) and HomKN (E)(K

∞,∅
N (E),Y) = 0

if Y ∈ C+N(Inj(E)) by [IKM17, Lem. 3.3]. However, the proof works in general without the use of
homology. Then Verdier’s criterion [Ver77, Ch. I, §2, no 5, 5-3 Prop.] yields the claim. □

Theorem 3.11. Let E be an exact idempotent complete category with enough projectives.

(a) The pair (K−N (Proj(E)),K−,∅N (E)) is a semiorthogonal decomposition of K−N (E), which gives
rise to a triangle equivalenceD−N(E) ≃ K−N (Proj(E)).

(b) The pair (K−,bEN (Proj(E)),K−,∅N (E)) is a semiorthogonal decomposition of K−,bN (E), which
gives rise to a triangle equivalenceDb

N(E) ≃ K−,bEN (Proj(E)).

Proof. Lemma 3.10 yields condition (a) in Definition 1.83, condition (b) follows from the standard
triangle of a resolution, see Corollaries 2.43 and 3.3. The triangle equivalences are then due to Propo-
sition 1.84 using the triangle equivalenceDb

N(E) ≃ D−,bN (E) from Theorem 3.9. □

Remark 3.12. In view of Remark 1.86, the triangle equivalences in Theorem 3.11 send an N-complex
X to P for a projective resolution P→ X, and lift morphisms.

Proposition 3.13. Let E be an exact idempotent complete category. Then the composed functor

Morm
N−2(E)

ιn

−→ Cb
N(E)→ Db

N(E), see Notation 1.69, is fully faithful and also denoted by ιn.

Proof. We may assume that n = 0. Due to Remark 3.12, postcomposing ι0 with the equivalence
Db

N(E)→ K−,bEN (Proj(E)) and the fully faithful functorK−,bEN (Proj(E))→ K−N (Proj(E)), see Theorems
2.20.(c) and 3.11.(b), yields the functor ρ from Proposition 2.40. Then ι0 is fully faithful since ρ is
so. □

Definition 3.14. For an additive category A, the (left hard) truncation τ≤n at n ∈ Z is the exact
functor CN(A)→ C−N(A) sending X ∈ CN(A) to

τ≤nX : · · · Xn−2 Xn−1 Xn 0 · · · .
dn−3

X dn−2
X dn−1

X

The (right hard) truncation τ≥n is defined analogously.

Remark 3.15. For any N-complex X ∈ CN(E) over an exact category E and n ∈ Z, there is a termsplit
short exact sequence τ≥nX X τ≤n−1X. It induces a distinguished triangle

τ≥nX X τ≤n−1 Στ≥nX

in KN(E), see Lemma 1.33, and hence inDN(E) if E is idempotent complete.

Reversing the construction in Corollary 2.38, we relate truncations and syzygies of acyclic N-complexes.
This is generalizes the quasi-isomorphism between an object and its resolution, known from the case
N = 2.
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Lemma 3.16. Let X ∈ CN(E) be an N-complex over an exact idempotent complete category E. Sup-
pose that X is acyclic at all positions up to n ∈ Z. Then the canonical morphism

τ≤nX : · · · Xn−N+1 Xn−N+2 · · · Xn−1 Xn

ιnΩn+1X : · · · 0 Cn−N+2
(1) (X) · · · Cn−1

(N−2)(X) Cn
(N−1)(X)

dX dX dX dX

is a resolution. In particular, there is an isomorphism of functors τ≤n � ιn ◦ Ωn+1 : APCN(E) →
D
−,b
N (E).

Proof. Patch all diagrams that can be obtained from Proposition 2.30 as in the proof of Theorem 2.26.
Then modify the resulting diagram at the right end as follows, and extend by zero to create a resolving
N-array X•• of X•0 = ι

nΩn+1X with X•N = τ
≤nX:

· · · Xn−N+2 Xn−N+3 · · · Xn−1 Xn

... Cn−N+2
(N−1) Cn−1

(N−1) Cn
(N−1)

...
. . .

... Cn−1
(N−2) Cn

(N−1)

. . . Cn−N+2
(2)

... Cn−1
(N−2)

. . .

Cn−N+1
(1) Cn−N+2

(1)

...
. . . Cn

(N−1)

· · · 0 0 Cn−N+2
(1) · · · Cn−1

(N−2) Cn
(N−1)

Then Proposition 2.42 and yield the desired resolution. Naturality is clear. □

3.2. Perfect N-complexes. In this subsection, we consider the subcategory Dperf
N (E) of perfect N-

complexes of Db
N(E). We characterize it by means of an Ext condition due to Buchweitz in the

classical case. The corresponding Verdier quotient is the N-singularity categoryDb
N(E). We show that

its objects are obtained by embedding Morm
N−2(E) at various positions, generalizing a statement of

Orlov’s (Lemma 3.25).

If E is idempotent complete, then so are its subcategories Proj(E) and Inj(E), see Remark 1.25. This
allows for the following

Definition 3.17. The category of perfect N-complexes over an exact idempotent complete category
E is defined asDperf

N (E) := Db
N(Proj(E)).

Lemma 3.18. Let E be an exact idempotent complete category with enough projectives.

(a) The canonical triangle functor Kb
N(Proj(E))→ Dperf

N (E) is an equivalence.
(b) The canonical triangle functorDperf

N (E)→ Db
N(E) is fully faithful.
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Proof.

(a) The claim follows from Lemma 3.10 applied to Proj(E) = Proj(Proj(E)).
(b) The functor exists due to Lemma 3.6. By precomposition with the equivalence from (a) the claim

follows from Lemma 3.10. □

Remark 3.19. Consider a perfect N-complex P : Pm · · · Pn ∈ D
perf
N (E) over an exact idempo-

tent complete category, then there is a distinguished triangle,

µn
1(Pn) P τ≤n−1P Σµn

1(Pn),

in DN(E). Hence, any such P is an iterated extension of the object µs
1(Ps), where s ∈ {m, . . . , n}. In

particular, as Hom is a (co)homological functor,

HomDN (E)(−, P) = 0 ⇐⇒ HomDN (E)(−, µs
1(Ps)) = 0 for all s ∈ {m, . . . , n},

HomDN (E)(P,−) = 0 ⇐⇒ HomDN (E)(µs
1(Ps),−) = 0 for all s ∈ {m, . . . , n}.

Definition 3.20. The triangulated hull triT (S) of subcategory S of a triangulated category T is the
smallest triangulated subcategory of T containing all objects of S.

Lemma 3.21. The category of perfect complexes over an exact idempotent complete category E is
given byDperf

N (E) = tri{µs
1(P) | P ∈ Proj(E), s ∈ {1, . . . ,N − 1}}, see also [IKM17, Lem. 2.6.(ii)].

Proof. By Lemma 1.60 and Remark 3.19, we have

µ0
1(P) = ΣµN−1

N−1(P) ∈ tri{µs
1(P) | P ∈ Proj(E), s ∈ {1, . . . ,N − 1}}

and the claim follows from Remark 3.19 using Theorem 1.59. □

Definition 3.22. We define the stabilized N-derived category, or N-singularity category, of an
exact idempotent complete category E as the Verdier quotientDb

N(E) := Db
N(E)/Dperf

N (E).

Definition 3.23. Let E be an exact idempotent complete category. The functor ιn = ιn
E

, see No-
tation 1.69, sends Proj(Morm

N−2(E)) to Dperf
N (E), see Theorem 1.71.(b), and hence factors uniquely

through the stable category as ιn = ιn
E

:

Morm
N−2(E) Db

N(E)

Morm
N−2(E) Db

N(E)

ιn
E

ιn
E

Definition 3.24. For n ∈ Z, we define the nth extension group of two N-complexes X,Y ∈ CN(E)
over an exact idempotent complete category E as Extn

E
(X,Y) := HomDN (E)(X,ΣnY).

Part (a) of Lemma 3.25 yields in particular a statement of Orlov’s in our setting, see [Orl09, Lem. 1.10].
It also serves to generalize Buchweitz’s characterization of perfect 2-complexes of modules in part (b),
see [Buc21, Lem. 1.2.1].
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Lemma 3.25. Let E be an exact idempotent complete category with enough projectives.

(a) If P ∈ C−,bEN (Proj(E)) is acyclic at all positions up to n + 1 ∈ Z, then P � ιnΩn+1P in Db
N(E).

In particular, any object ofDb
N(E) lies in ιn(Morm

N−2(E)), for any sufficiently small n ∈ Z.
(b) An N-complex X ∈ Db

N(E) lies in Dperf
N (E) if and only if Extn

E
(X, ι0(Morm

N−2(E))) = 0 for any
sufficiently large n ∈ Z. In particular, the subcategoryDperf

N (E) ofDb
N(E) is thick.

Proof.

(a) By Corollary 2.32 and Lemma 3.8, there is a distinguished triangle

σ≤nP P σ≥n−N+2P Σσ≤nP

in D−,bN (E) with σ≤nP acyclic. It follows that P � σ≥n−N+2P in DN(E). Setting C := Ωn+1P
we have τ≤nσ≥n−N+2P = ιnC and τ≥n+1σ≥n−N+2P = τ≥n+1P. Applying Remark 3.15 to X =
σ≥n−N+2P � P yields a distinguished triangle

τ≥n+1P P ιnC Στ≥n+1P (3.2)

in Db
N(E) with τ≥n+1P ∈ Dperf

N (E). It follows that P � ιnC in Db
N(E), which proves (a). The

particular claim follows by Theorem 3.11.(b).
(b) Assume first that X ∈ Dperf

N (E). It follows from Theorem 1.59 and Lemma 3.10 that, for any
sufficiently large n ∈ Z, and s ∈ {0, 1},

HomDN (E)(X,Σ2n+sι0(Morm
N−2(E))) � HomKN (E)(Σ−sX,ΘNnι0(Morm

N−2(E))) = 0,

because these two complexes have disjoint support. To show the converse suppose that X ∈
Db

N(E) satisfies the vanishing of extension groups. Corollaries 2.43 and 3.3 yield a projective
resolution P → X with P ∈ C−,bEN (Proj(E)) and X � P in DN(E). Pick m ∈ Z sufficiently large
such that P is acyclic at all positions up to n+1 where n = −Nm. Due to the distinguished triangle
(3.2) from the proof of (a), it suffices to show that ιnC ∈ Dperf

N (E). Then X lies in the triangulated
subcategory Dperf

N (E) of Db
N(E). Since ιnC � Σ2mι0C ∈ Σ2mι0Morm

N−2(E) by Theorem 1.59, we
may assume by hypothesis that HomDN (E)(P, ιnC) = 0. Then (3.2) yields an induced morphism,
see Remark 1.85,

P ιnC Στ≥n+1P

ιnC

0

0
f

inDN(E). Lemma 3.10 shows that

HomDN (E)(τ≥n+1Στ≥n+1P, ιnC) � HomKN (E)(τ≥n+1Στ≥n+1P, ιnC) = 0,

because these two complexes have disjoint support. Thus, there is an induced morphism, see
Remark 3.15 and Remark 1.85,
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τ≥n+1Στ≥n+1P Στ≥n+1P τ≤nΣτ≥n+1P

ιnC.

0 f

in DN(E). By Lemma 3.26.(b), f and hence idιnC = ι
n idC thus factors through τ≤nΣτ≥n+1P ∈

ιn Proj(Morm
N−2(E)), see Theorem 1.71.(b). By Proposition 3.13 this implies that idC and hence

C is zero in the stable category Morm
N−2(E). It follows that C ∈ Proj(Morm

N−2(E)) due to Re-
mark 1.27.(b) and thus ιnC ∈ Dperf

N (E) as claimed. The particular claim follows as Extn
E
(−,−)

commutes with direct sums in the first argument. □

Lemma 3.26. For an N-complex X ∈ CN(A) over an additive categoryA, and n ∈ Z we have:

(a) τ≥n−N+1Στ≤nX =
⊕N−1

k=1 µ
n−k
N−k(Xn−k+1)

(b) τ≤n−1Στ≥nX �CN (A)
⊕N−1

k=1 µ
n−1
N−k(Xn+k−1)

Proof. We use the explicit description of the considered N-complexes given in Construction 1.58.(a).

(a) The direct summand corresponding to the last row of the matrix of the differential of τ≥n−N+1Στ≤nX
is zero, which implies the claimed equality.

(b) The differentials of τ≤n−1Στ≥nX read

dk
τ≤n−1Στ≥nX =

 Ek−n+N

−d{k−n+N}
X · · · −dX


for k ∈ {n − N + 1, . . . , n − 2}. The desired isomorphism f : τ≤n−1Στ≥nX →

⊕N−1
k=1 µ

n−k
N−k(Xn−k+1)

is given by

f k =



1 0 · · · 0

dX 1
. . .

...
...

. . .
. . . 0

d{k−n+N−1}
X · · · dX 1


for k ∈ {n − N + 1, . . . , n − 1} and zero elsewhere. □

3.3. Stabilized syzygies. In this subsection, we approach the question whether full faithfulness of
ιn : Morm

N−2(E) → Db
N(E), see Proposition 3.13, persists under stabilization. We bypass this problem

by restricting the functor ιn to Ωn+1(TAPCN(E)), see Proposition 3.27. Following Buchweitz, this
suffices to prove Theorem A. Avramov, Briggs, Iyengar and Letz offer an alternative argument, see
[Buc21, p. 133], which depends on the existence of arbitrary products in the category of modules. Our
proof, inspired by Orlov, see [Orl09, Prop. 1.11], does not require this assumption.

Proposition 3.27. Let E be an exact idempotent complete category and n ∈ Z. Then the functor
ιn : Morm

N−2(E)→ Db
N(E) becomes fully faithful when restricted to the image Ωn+1(TAPCN(E)).
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Proof. We may assume that n = 0. Consider X,Y ∈ Morm
N−2(E), and write X = Ω1P̃ and Y = Ω1Q̃

where P̃, Q̃ ∈ TAPCN(E). By Lemma 3.16, we have isomorphisms

ι0Y � τ≤0Q̃ =: Q ∈ C−,bEN (Proj(E)) and τ≤m−1Q � ιm−1ΩmQ

inDN(E) for any sufficiently small m ∈ Z. Then Remark 3.15 yields a distinguished triangle

τ≥mQ ι0Y ιm−1ΩmQ Στ≥mQv t (3.3)

inDN(E) with C(t) � Στ≥mQ ∈ Dperf
N (E). We use this to prove that

HomMorm
N−2(E)(X,Y)

ι0

−−→
�

HomDb
N (E)(ι

0X, ι0Y)

is an isomorphism.

Surjectivity: Consider a morphism ι0X → ι0Y inDb
N(E) given by a roof

s−1g : ι0X W ι0Y
g s

of morphisms g, s in Db
N(E) with C(s) ∈ Dperf

N (E). We may assume that Σ−1C(s) and ιm−1ΩmQ have
disjoint supports and hence

HomDN (E)(Σ−1C(s), ιm−1ΩmQ) � HomKN (E)(Σ−1C(s), ιm−1ΩmQ) = 0,

HomDN (E)(ι0X,Στ≥mQ) � HomDN (E)(τ≤0P̃,Στ≥mQ) = 0

by Lemmas 3.10, 3.16 and 3.28.(b). Using the distinguished triangles T (s) from Construction 1.31
and (3.3) together with Proposition 3.13, we obtain the following induced morphisms inDN(E), where
f ∈ HomMorm

N−2(E)(X,Y), see Remark 1.85:

ιm−1ΩmQ ι0X

Σ−1C(s) ι0Y W ι0Y ιm−1ΩmQ Στ≥mQ

r ◦ g 0ι0 f0

s

t r

t

These fit into an equivalence of roofs s−1g→ ι0 f inDN(E):
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W

ι0X ιm−1ΩmQ ι0Y

ι0Y

r
g

r ◦ g

ι0 f

s

t

t

Injectivity: Suppose that f ∈ HomMorm
N−2(E)(X,Y) is a morphism with ι0 f = 0 in Db

N(E). We prove
that f factors through an object of Proj(Morm

N−2(E)). By assumption, there is a morphism s : ι0Y → W
inDb

N(E) with cone C(s) ∈ Dperf
N (E) such that

ι0Y

ι0X W ι0Y

s
ι0 f

0
s

commutes in DN(E). As before, we may assume that HomDN (E)(Σ−1C(s), ιm−1ΩmQ) = 0 and use
the distinguished triangles T (s) from Construction 1.31 and (3.3) to obtain the following induced
morphisms inDN(E):

ι0X Σ−1C(s)

Σ−1C(s) ι0Y W τ≥mQ ι0Y ιm−1ΩmQ

g
ι0 f 0 w u 0

u s v t

These fit into a commutative diagram

τ≥mQ

ι0X Σ−1C(s) ι0Y

ι0Y

v

g

w ◦ g

ι0 f

w

u

u
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in DN(E), and hence ι0 f factors through τ≥mQ ∈ Dperf
N (E). The claimed injectivity follows from

Proposition 3.13 and Lemma 3.29. □

Lemma 3.28. Consider N-complexes X ∈ C∅
∗

N (E), P̃ ∈ TAPCN(E), Q ∈ Cb
N(Proj(E)) over an exact

idempotent complete category E and n ∈ Z. We have

(a) HomKN (E)(X,Q) = 0 and, in particular, HomDN (E)(τ≤nP̃, τ≤n−N+1Q) = 0,
(b) HomKN (E)(τ≤nX,Στ≤nQ) = 0 and, in particular, HomDN (E)(τ≤nP̃,Στ≤nQ) = 0.

Proof.

(a) We may assume that Q , 0 and set m := max{k ∈ Z |Qk , 0}. Since X is totally acyclic,
HomKN (E)(X, µm

1 (Qm)) = H−m
(1) (HomE(X,Qm)) = 0 due to Remark 1.63.(d). By induction on the

length of Q we may suppose that HomKN (E)(X, τ≤m−1Q) = 0. Then HomKN (E)(X,Q) = 0 follows
by applying HomKN (E)(X,−) to the distinguished triangle

µm
1 (Qm) Q τ≤m−1Q Σµm

1 (Qm)

in KN(E), see Remark 3.15. The second claim follows using Lemma 3.10:

HomDN (E)(τ≤nP̃, τ≤n−N+1Q) � HomKN (E)(τ≤nP̃, τ≤n−N+1Q) = HomKN (E)(P̃, τ≤n−N+1Q) = 0.

(b) We may assume that n = 0 and Q = τ≤0Q. We have τ≥−N+1ΣQ =
⊕N−1

k=1 µ
−k
N−k(Q−k+1) by

Lemma 3.26.(a), see Construction 1.58.(a). Using Remark 1.63.(d), this implies that

HomKN (E)(τ≤0X, τ≥−N+1ΣQ) �
N−1⊕
k=1

HomKN (E)(τ≤0X, µ−k
N−k(Q−k+1))

�
N−1⊕
k=1

Hk
(N−k)(HomE(τ≤0X,Q−k+1))

=

N−1⊕
k=1

Hk
(N−k)(τ

≥0 HomE(X,Q−k+1))

=

N−1⊕
k=1

Hk
(N−k)(HomE(X,Q−k+1))

= 0,

since X is totally acyclic. Due to part (a) for τ≤−NΣQ ∈ Cb
N(Proj(E)), we have

HomKN (E)(τ≤0X, τ≤−NΣQ) = HomKN (E)(X, τ≤−NΣQ) = 0.

Then HomKN (E)(τ≤0X,ΣQ) = 0 by applying HomKN (E)(τ≤0X,−) to the distinguished triangle

τ≥−N+1ΣQ ΣQ τ≤−NΣQ Στ≥−N+1ΣQ

in KN(E), see Remark 3.15. The second claim is again due to Lemma 3.10. □
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Lemma 3.29. Let E be an exact idempotent complete category, X = Ω1P̃ ∈ Morm
N−2(E) where P̃ ∈

TAPCN(E) and Q = τ≤0Q ∈ Dperf
N (E). Then any morphism g : ι0X → Q in Db

N(E) factors through an
object of ι0 Proj(Morm

N−2(E))

Proof. Since HomDN (E)(ι0X, τ≤−N+1Q) � HomDN (E)(τ≤0P̃, τ≤−N+1Q) = 0 by Lemmas 3.16 and 3.28.(a),
the morphism g factors inDN(E) as

ι0X

τ≥−N+2Q Q τ≤−N+1Q,

g
0

see Remarks 1.85 and 3.15. We may thus assume that Q = τ≥−N+2Q. Then applying the exact functor
τ≤0 to the termsplit short exact sequence Σ−1Q P(Q) Q, see Constructions 1.31 and 1.51,
yields a distinguished triangle

τ≤0Σ−1Q τ≤0P(Q) Q Στ≤0Σ−1Q

in DN(E), see Lemma 1.33. Since HomDN (E)(ι0X,Στ≤0Σ−1Q) = HomDN (E)(τ≤0P̃,Στ≤0Σ−1Q) = 0 by
Lemmas 3.16 and 3.28.(b), the morphism g factors inDN(E) as

ι0X

τ≤0P(Q) Q Στ≤0Σ−1Q,

g
0

see Remark 1.85, where τ≤0P(Q) =
⊕N−1

k=1 µ
0
k(Q−k+1) ∈ ι0 Proj(Morm

N−2(E)), see Theorem 1.71.(b).
□

3.4. Stabilized truncations. In this subsection, we prove that the stabilized truncations τ≤n for n ∈ Z
are pairwise isomorphic fully faithful triangle functors.

Proposition 3.30. Let E be an exact idempotent complete category and n ∈ Z. Then the truncation
τ≤n : CN(E) → CN(E) induces a triangulated functor τ≤n : APCN(E) → Db

N(E) such that τ≤n �

ιn ◦Ωn+1.

Proof. Due to Lemmas 2.49 and 3.16, Definition 3.23 and Theorem 3.9, τ≤n induces a well-defined
functor APCN(E)→ D−,bN (E) ≃ Db

N(E) with τ≤n � ιn ◦Ωn+1. To prove that τ≤n is triangulated we may
assume that n = 0. Let ΣA and ΣD be the suspension functors in APCN(E) and Db

N(E), respectively.
We need to establish a natural isomorphism η : τ≤0ΣA → ΣDτ

≤0 under which the functor τ≤0 maps
distinguished triangles to distinguished triangles. To simplify notation, we abbreviate X≤0 := τ≤0X
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for an N-complex X and likewise for morphisms. For any P ∈ APCN(E), there is an isomorphism

I(P)≤0 =

⊕
k∈Z

µk
N(Pk)

≤0

�
0⊕

k=−∞

µk
N(Pk) ⊕ J(P) = I(P≤0) ⊕ J(P), where J(P) :=

N−1⊕
k=1

µ0
N−k(Pk).

Let f : P → Q be a morphism in APCN(E). We apply the exact functor τ≤0 to (D( f )), see Construc-
tions 1.31 and 1.51, and combine it with (D( f ≤0)). This yields a diagram of termsplit short exact
sequences, in which the dashed and dotted morphisms remain to be constructed:

P≤0 I(P≤0) Σ(P≤0)

Q≤0 C( f ≤0) Σ(P≤0)

P≤0 I(P)≤0 (ΣP)≤0

Q≤0 C( f )≤0 (ΣP)≤0

J(P) J(P)

J(P) J(P)

f ≤0
□

ηP

f ≤0

p ηP

□ (3.4)

The lower pushout is due to exactness of τ≤0, see Proposition 1.17. The dashed morphisms occur in
the following commutative diagram of short exact sequences obtained from Proposition 1.12.(a) and
Lemma 1.15:

0 J(P) J(P)

P≤0 Q≤0 ⊕ I(P)≤0 C( f )≤0

P≤0 Q≤0 ⊕ I(P≤0) C( f ≤0)

id 0

0 p



Then (3.4) commutes, save the dotted morphisms. Both dotted termsplit short exact sequences arise
from Lemma 1.15 as well. They agree by precomposing with the epic I(P)≤0 ↠ (ΣP)≤0.
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In the singularity categoryDb
N(E), the perfect N-complex J(P) is zero and (3.4) yields an isomorphism

of candidate triangles:

P≤0 Q≤0 C( f )≤0 (ΣP)≤0

P≤0 Q≤0 C( f ≤0) Σ(P≤0)

� ηP �

The naturality of the isomorphisms η = (ηP)P results from the commutative diagram

P≤0 I(P≤0) Σ(P≤0)

P≤0 I(P)≤0 (ΣP)≤0

Q≤0 I(Q≤0) Σ(Q≤0)

Q≤0 I(Q)≤0 (ΣQ)≤0

f ≤0

Σ( f ≤0)

f ≤0

ηP

ηQ

(Σ f )≤0

in CN(E), see Remark 1.52, where the rightmost square commutes by precomposing with the epic
I(P)≤0 ↠ Σ(P)≤0. □

Lemma 3.31. Let E be an exact idempotent complete category. The canonical maps induce a directed
system of isomorphic functors

· · · τ≤n+1 τ≤n · · ·
� � �

in the category Func(APCN(E),Db
N(E)). In particular, the inverse limit τ≤ := lim

←−−k
τ≤k exists and is

isomorphic to any of the functors τ≤n, where n ∈ Z.

Proof. For P ∈ APCN(E), there is a distinguished triangle

µ0
N−1(P1) C(τ≤1P→ τ≤0P) C(idτ≤0P) Σµ0

N−1(P1)

in D−,b(E) ≃ Db(E), see Construction 1.58.(a), Lemma 1.33 and Theorem 3.9. As C(idτ≤0P) and
µ0

N−1(P1) are both zero, so is C(τ≤1P→ τ≤0P). Thus, τ≤1P � τ≤0P which implies the claim. □

3.5. Buchweitz’s Theorem. In this subsection we finally prove Theorem A. The last missing ingre-
dient is the essential surjectivity of the stabilized truncation.

Definition 3.32. We say that an exact category E has locally finite F -dimension for a subcategory F
if every objects X ∈ E has a projective resolution P over E such that syzg

P(X) ∈ F for some g ∈ Z, see
Definition 1.41. In particular, E has enough projectives.

Assumption 3.33.

(a) E is an exact idempotent complete category;
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(b) F is a Frobenius category;
(c) F is a fully exact, replete subcategory of E;
(d) E has locally finite F -dimension and Proj(F ) = Proj(E).

Remark 3.34. Assume 3.33 and consider X, P and g as in Definition 3.32. Resolving syzg
P(X) ∈ F

by E-projectives in F yields a projective resolution Q of X over E with syzn
Q(X) ∈ F for n ≥ g. By

Proposition 1.43, then syzn
P(X) ⊕ Q̃n � syzn

Q(X) ⊕ P̃n lies in F for some P̃n, Q̃n ∈ Proj(E) ⊆ F .

Lemma 3.35. Assuming 3.33, for any P ∈ C∞,+N (Proj(E)), there is an acyclic N-complex Q ∈ C−,∅EN (Proj(E))∩
Proj(CN(E)) such that Ωn(P ⊕ Q) ∈ Morm

N−2(F ) for any sufficiently small n ∈ Z.

Proof. By shifting P, we may assume that P is acyclic at all non-positive positions. Suppose that
n ∈ Z is sufficiently small. Then the cokernels of the admissible monics in Ωn(P ⊕ Q) occur in
Ωn+1(P ⊕ Q), . . . ,Ωn+N−1(P ⊕ Q). If all their objects lie in F , then Ωn(P ⊕ Q) ∈ Morm

N−2(F ), since F
is fully exact in E.
Write n = k − Nl, where k ∈ {−N + 1, . . . , 0} and l ∈ N. For any r ∈ {1, . . . ,N − 1}, the projective
resolution Θkτ≤kγk

r (P) realizes Ωn(P)r = Ck−Nl−N+r
(r) (P) as a 2lth syzygy of Ck

(N−r)(P):

· · · Pn−N+r Pn · · · Pk−N Pk−N+r Pk Pk+r · · ·

Ωn(P)r Ck
(N−r)(P)

d{N−r}
P d{r}P d{N−r}

P d{r}P d{N−r}
P d{r}P

Due to Remark 3.34, there are Qn
r ∈ Proj(E), for r ∈ {1, . . . ,N − 1}, such that Ωn(P)r ⊕ Qn

r ∈ F .
As Proj(E) ⊆ F , the object Qn :=

⊕N−1
r=1 Qn

r works for all r. Due to Remark 2.48, we have
Ωn(µn

N(Qn)) = µN−1(Qn) and Ωn(P ⊕ µn
N(Qn))r = Ωn(P)r ⊕ Qn ∈ F for any r. The claim follows

with Q :=
⊕

n≪0 µ
n
N(Qn), see Remarks 1.21 and 2.10.(b) and Lemma 1.50. □

Proposition 3.36. Assuming 3.33, the restricted truncation τ≤ : APCN(F ) → Db
N(E) is essentially

surjective, see Corollary 2.22.

Proof. Due to Corollaries 2.43 and 3.3, any X ∈ Cb
N(E) admits a projective resolution P → X with

P ∈ C−,bEN (Proj(E)). By Lemma 3.35, we may assume that Ωn+1P ∈ Morm
N−2(F ) for any sufficiently

small n. Proposition 2.47 yields a Q ∈ APCN(F ) withΩn+1Q � Ωn+1P in Morm
N−2(F ). Using Lemmas

3.25.(a), 3.16 and 3.31, we conclude that X � P � ιnΩn+1Q � τ≤nQ � τ≤Q in Db
N(E) for sufficiently

small n ∈ Z. □

Theorem 3.37 (Buchweitz’s Theorem). Assuming 3.33, there is, for any n ∈ Z, the following commu-
tative diagram, where ≃ indicates triangle equivalences:
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APCN(F ) Morm
N−2(F )

Db
N(E)

TAPCN(E) Morm
N−2(E)

≃

Ωn+1
F

≃

≃

τ≤n

Ωn+1
E

ιn
E

Proof. By Lemma 1.74 and Corollary 2.22, there is a fully faithful functor Morm
N−2(F )→ Morm

N−2(E)
and a fully faithful triangle functor APCN(F ) = TAPCN(F )→ TAPCN(E), see Remark 2.3. The outer
square commutes by construction. By Proposition 3.30, τ≤n � ιn

E
◦ Ωn+1

E
is a triangle functor. The re-

stricted truncation τ≤n : APCN(F )→ Db
N(E) is then a triangle functor isomorphic to ιn

E
◦ Ωn+1

F
. Since

Ωn+1
F

is a triangle equivalence by Theorem 2.50, it is fully faithful by Proposition 3.27 and hence a
triangle equivalence by Lemma 3.31 and Proposition 3.36. The restriction Morm

N−2(F )→ Db
N(E) of

ιn
E

is then a triangle equivalence as well. This concludes the proof. □
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