
manuscripta mathematica manuscript No.
(will be inserted by the editor)

Maximal multihomogeneity of
algebraic hypersurface singularities

Mathias Schulze

Received: date / Revised version: date

Abstract From the degree zero part of the logarithmic vector fields along an alge-

braic hypersurface singularity we identify the maximal multihomogeneity of a defining

equation in form of a maximal algebraic torus in the embedded automorphism group.

We show that all such maximal tori are conjugate and in one–to–one correspondence

to maximal tori in the linear jet of the embedded automorphism group.

These results are motivated by Kyoji Saito’s characterization of quasihomogeneity

for isolated hypersurface singularities [Sai71] and extend previous work with Granger

[GS06a, Thm. 5.4] and of Hauser and Müller [HM89, Thm. 4].
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1 Introduction and notation

A convergent power series f ∈ C{x1, . . . , xn} with f(0) = 0 defines a complex hypersur-

face singularity X = {x ∈ Cn | f(x) = 0} in the space germ (Cn, 0) of Cn at the origin.

The singularity is isolated if the gradient ideal J(f) = 〈 ∂f
∂x1

, . . . , ∂f
∂xn

〉 of f defines

the origin, that is, {0} =
n

x ∈ Cn | ∂f
∂x1

(x) = · · · = ∂f
∂xn

(x) = 0
o

. In this case, there

is a κ ≥ 1 such that fκ is contained in J(f), that is, fκ = g1
∂f
∂x1

+ · · · + gn
∂f

∂xn

for some g1, . . . , gn ∈ C{x1, . . . , xn}. The power series f is weakly quasihomoge-

neous of degree w ∈ Z with respect to a weight vector 0 6= (w1, . . . , wn) ∈ Zn if

f(x1, . . . , xn) =
P

α∈Nn fαxα where fα 6= 0 only if w1α1 + · · · + wnαn = w [Sai71,

§1]. While this condition depends on coordinates x1, . . . , xn, it implies for w 6= 0 that

κ = 1 by choosing gi = wi
w xi for i = 1, . . . , n. If f has order at least 3 then the isolated-

ness of the singularity forces w, w1, . . . , wn ∈ Z>0 [Sai71, Lem. 1.10]. Strictly positive

weights reduce a power series to a polynomial which is then called a quasihomogeneous

polynomial. In his celebrated article [Sai71], Saito proves the converse of the above
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implication: If κ = 1 then g1(0) = · · · = gn(0) = 0 [Sai71, Lem. 4.2] and there is a

coordinate system x1, . . . , xn in which f(x1, . . . , xn) is a quasihomogeneous polynomial

[Sai71, Satz]. Our results can be considered as a generalization of Saito’s theorem for

algebraic hypersurface singularities. Instead of a single homogeneity, we shall identify

multihomogeneities of the singularity.

The study of (multi–)homogeneities of singularities is of interest for its topologi-

cal implications: For example, Saito shows that quasihomogeneity of X is equivalent

to holomorphic contractibility of X and to the exactness of the Poincaré complex

of X [Sai71, Satz]. Another example is the problem of characterizing hypersurfaces

for which the so–called logarithmic comparison theorem holds [Tor07]. In analogy to

Grothendieck’s famous comparison theorem [Gro66], this ”theorem”, with yet unde-

termined hypothesis, states that the complex cohomology of the complement of a hy-

persurface in a complex manifold is the hypercohomology of the logarithmic de Rham

complex. This statement holds, for example, for normal crossing divisors and, more gen-

erally, for strongly quasihomogeneous free divisors [CJNMM96]. A central conjecture by

Calderón–Moreno et al. [GS06a, Cnj. 1.1] states that, for free divisors, the logarithmic

comparison theorem requires a homogeneity condition called strong Euler homogene-

ity. In the above notation, a hypersurface X is strongly Euler homogeneous if it admits

at each point p = (p1, . . . , pn) ∈ X a defining equation f ∈ C{x1 − p1, . . . , xn − pn}
with κ = 1 and g1(p) = · · · = gn(p) = 0. The algebraicity hypothesis in our results is

fulfilled in particular for the class of linear free divisors which form an interesting class

of examples to test the mentioned conjecture [GMNS06]. Even for isolated singularities

the characterization of the logarithmic comparison theorem is incomplete [GS06b].

In order to further motivate and finally state our results we introduce the termi-

nology that we shall use. Let P be either O = C{x}, the ring of convergent power

series in x = x1, . . . , xn, or Ô = C[[x]], the ring of formal power series in x and

denote by m = 〈x〉 the maximal ideal in O or Ô. Let Aut(P) be the automor-

phism group of P, Der(P) the P-module of C-linear derivations on P, and denote

∆(P) = m · Der(P) = {δ ∈ Der(P) | δ(m) ⊆ m}. In the convergent case, the latter

consists of those holomorphic vector fields on (C, 0) that vanish at the origin. The

commutator of two vector fields δ1, δ2 ∈ Der(P) is denoted by [δ1, δ2] ∈ Der(P).

Let 0 6= f ∈ m and Autf = {ϕ ∈ Aut(P) | ϕ(f) ∈ 〈f〉} the group of automorphisms

preserving the ideal 〈f〉. In the convergent case, this is the group of automorphisms

of (Cn, 0) preserving the hypersurface X. Our object of interest is the P-module of

logarithmic vector fields Derf = {δ ∈ Der(P) | δ(f) ∈ 〈f〉} introduced in [Sai80]. In

the convergent case, this is the module of vector fields tangent to the smooth part of X.

The module Derf is unchanged if we assume f to be reduced. We shall further assume

that Derf ⊆ ∆(P). By Rossi’s theorem [Ros63, Cor. 3.4], this means in the convergent

case that the variety X defined by f is not a product with a smooth factor. As remarked

in [HM93, 2. Rmk. (c)], Derf is the Lie algebra of the infinite Lie group Autf in the

convergent case. If χ(f) ∈ C∗ · f then χ ∈ ∆(P) is called an Euler vector field. Strong

Euler homogeneity of a hypersurface X can be reformulated as the existence of an

Euler vector field at each p ∈ X.

For a fixed coordinate system, any derivation δ ∈ Der(P) can be decomposed into

homogeneous components, δ =
P∞

i=−1 δi. Moreover, δ0 =
P

i,j ai,jxi∂xj for some

matrix A = (ai,j) and we call δ0 diagonal if A is diagonal. A derivation δ ∈ ∆(P) is

called nilpotent if A is nilpotent and semisimple if m has a basis of eigenvectors of δ. For

a fixed coordinate system, any δ ∈ ∆(P) is a sum δ = δS +δN where δS = δS,0 and δN,0

are defined by the semisimple and nilpotent parts of the matrix A corresponding to δ0.
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In particular, [δS , δN,0] = 0. One can construct a formal coordinate change such that

even [δS , δN ] = 0 and then δ = δS + δN is called the Poincaré–Dulac decomposition of

δ [AA88, Ch. 3. §3.2].

We return to Saito’s theorem: Reformulated in the introduced terminology, χ =Pn
i=1 gi∂xi is an Euler vector field and σ =

Pn
i=1 wixi∂xi is a diagonal Euler vec-

tor field with σ(f) = w · f . In his proof, Saito applies Artin approximation theorem

[Art68, Thm. 1.2] to the formal Poincaré–Dulac coordinate change [Sai71, Satz 3] in

order to obtain a convergent coordinate change. The strict positivity of the weights

w1, . . . , wn derived from the isolatedness assumption is crucial in this procedure. A

more detailed examination of his proof shows that σ comes from χS via the linear part

of this coordinate change if the order of f is at least 3. By integration, σ corresponds

to the one–parameter subgroup {ϕλ | λ ∈ C∗} ⊆ Aut(O) defined by ϕλ(xi) = λwixi.

Assuming w1, . . . , wn to be coprime, λ 7→ ϕλ defines an inclusion C∗ ⊆ Aut(O). As

ϕλ(f) = λw · f , the latter inclusion factors through Autf ⊆ Aut(O). The constructed

coordinate system makes this 1-torus C∗ explicitly visible as a diagonal subgroup of

the group of linear transformations GLn(C) ⊆ Autf defined by the coordinate system.

Various attempts have been made to generalize Saito’s result. While Scheja and

Wiebe [SW77] drop the hypersurface assumption and treat the case of isolated complete

intersection singularities, Hauser and Müller [HM89, Thm. 4] drop the isolatedness

assumption and consider algebraic singularities. In the latter approach the approxima-

tion property of excellent Henselian local rings due to Popescu and Rotthaus replaces

the classical Artin approximation. The above discussion suggests another direction of

generalization: d-dimensional vector spaces of commuting semisimple parts δS of log-

arithmic vector fields δ ∈ Derf should define complex d-tori (C∗)d in Autf which we

interpret as multihomogeneities of the singularity X. In the formal case, this follows

from Part a of Theorem 1 which is a reformulation of the formal structure theorem for

Derf in [GS06a, Thm. 5.4]. Part b of Theorem 1 is a convergent version of this struc-

ture theorem for algebraic hypersurface singularities. While the formulation in [GS06a,

Thm. 5.4] bypasses the uniqueness question for maximal multihomogeneities, we es-

tablish this uniqueness up to conjugacy in Theorem 2 using general results of Müller

[Mül86] on automorphism groups of singularities. Moreover, we conclude in Corollary

1 that the maximal multihomogeneities of X correspond to maximal tori in the linear

jet of Autf .

2 Results and proofs

Part a of the following theorem is a reformulation of the formal structure theorem for

Derf in [GS06a, Thm. 5.4] and the statement a.5 is implicit in its proof. We shall

deduce Part b from Part a following the outline of [HM89, Thm. 4].

Theorem 1 (existence of maximal multihomogeneity) Let

a. f ∈ Ô or

b. f ∈ O algebraic over C[x]

and let δ1, . . . , δt ∈ Derf with diagonal degree 0 part. Then there is an algebraic torus

Ts ⊆ Autf in the sense of [Mül86, 1. Def. ii)] with Lie algebra ts and suitable coor-

dinates such that Ts ⊆ GLn(C). In these coordinates there is a basis σ1, . . . , σs of ts

which extends to a minimal system of generators σ1, . . . , σs, ν1, . . . , νr of Derf and a

choice of f with irreducible factors f1, . . . , fm such that
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1. σi is diagonal with eigenvalues in Z,

2. νi is nilpotent,

3. [σi, νj ] ∈ Z · νj ,

4. σi(fj) ∈ Z · fj ,

5. (δi)0 ∈ 〈σ1, . . . , σs〉C, and

6. if δ ∈ Derf with [σi, δ0] = 0 for all i then δS ∈ 〈σ1, . . . , σs〉C.

Proof The statement a.5 holds by the construction in the proof of [GS06a, Thm. 5.4]

using that the coordinate change in [GS06a, Thm. 5.3] is tangent to the identity.

By a.1 and a.4, there is a formal coordinate change ȳ(x) such that ḡ(x) = f(ȳ(x))

fulfills σi(ḡ) = λi · ḡ where λi ∈ Z and σi =
Pn

j=1 σi,jxj∂xj where σi,j ∈ Z. We identify

σi with its coefficient vector (σi,1, . . . , σi,n) ∈ Zn. By [Bor91, II.7.3 (2)], the saturation

L = ((Zn)∨/(Zn/

sX
i=1

Zσi)
∨)∨ ∼= Zs ⊆ Zn

of the lattice generated by σ1, . . . , σs defines an algebraic torus

Gs
m
∼= Ts := Spec(C[L]) ⊆ Spec(C[Zn]) ⊆ GLn(C) ⊆ Aut(P)

with Lie algebra ts = 〈σ1, . . . , σs〉. Since the x-monomials are common eigenvec-

tors for x1∂1, . . . , xn∂n with integer eigenvalues, we may assume L =
Ps

i=1 Zσi pre-

serving the condition λi ∈ Z. Then the σ-multihomogeneity of ḡ of multidegree λ

stated above translates to ḡ being equivariant for Ts ⊆ GLn(C) and the character

Ts → Spec(C[Z]) = GL1(C) defined by L 3 σi 7→ λi ∈ Z. Now 〈f〉Ô is equivalent

to the Ts-stable ideal 〈ḡ〉Ô and [HM89, Thm. 2’] implies that also 〈f〉O is equivalent

to a Ts-stable ideal. This means that there is an analytic coordinate change y(x) and

a unit u ∈ O∗ such that g(x) = u(x) · f(y(x)) generates a Ts-stable ideal in O. By

abuse of notation we denote this g by f again. Then [Mül86, Hilfssatz 2] shows that

〈f〉O has a Ts-equivariant generator which we may assume to be f . This proves b.1

and σi(f) ∈ Z · f which is weaker than b.4.

To avoid the non-trivial [Mül86, Hilfssatz 2] and conclude b.4, one can argue as

follows: By [Hum75, Thm. 13.2], the Ts- and ts-stable subspaces in O/mk coincide.

Since ideals in O are closed in the m-adic topology, this shows that 〈f〉O is σ-stable.

Then a multigraded version1 of [SW73, 2.4] shows that 〈f〉O has a Ts-equivariant

generator. With 〈f〉O also its minimal associated primes are σ-stable by [SW73, 2.5].

Again by [SW73, 2.4], these primes have Ts-equivariant generators f1, . . . , fm and b.4

follows.

With f also its partial derivatives ∂xi(f) are Ts-equivariant. Thus Derf is Ts-stable

since it can be considered as the projection of the syzygy module of ∂x1(f), . . . , ∂xn(f), f

to the first n components. Its Ts-sub-module ts = 〈σ1, . . . , σs〉 is the adjoint repre-

sentation of Ts and hence trivial. By a module version2 of [Mül86, Hilfssatz 2], Derf
has a minimal system of generators σ1, . . . , σs, ν1, . . . , νr which spans over C a rational

Ts-module. By the proof of [Mil06, Thm. 9.13], the Ts-module 〈σ1, . . . , σs, ν1, . . . , νr〉C
can be diagonalized without changing the σi and b.3 follows. Like above, one can use

a multigraded module version of [SW73, 2.4] instead.

1 The arguments in [SW73, 2.2-4] give a more general correspondence of (ks, +)-graduations
and sets of s simultaneously diagonalizable k-derivations on analytic k-algebras.

2 The statement in [Mül86, Hilfssatz 2] holds more generally for any analytic sub-module of
a free analytic module in the sense of [GR71].
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The maximality property b.6 follows from its formal version a.6. Combined with b.3

it guarantees the existence of νi satisfying b.2: If the σ-multidegree of a νi is non-zero

then it is nilpotent by [GS06a, Lem. 2.6], otherwise one can subtract its semisimple

part which is a linear combination of the σi by b.6.

Remark 1

1. By [KPR75, 2.11], the implicit function theorem holds in C〈x〉, the ring of al-

gebraic power series. Thus the proof of [HM89, Thm. 2’] works inside of C〈x〉 as well.

However it is not clear if this ring is graded in the sense of [SW73, §1-2]. A positive

answer would imply that Theorem 1.b even holds inside of C〈x〉.
2. According to Michel Granger, the uniqueness of s in Theorem 1 can be deduced

from the conjugacy of all Cartan subalgebras [Ser01, III.4. Thm. 2] by showing that ts

and n0 = 〈(νj)0 | σi(νj) = 0〉C span a Cartan subalgebra h of g = Derf /(Derf ∩m2 ·
Der(P)) where n0 is the intersection of h with the set of nilpotent elements in g.

We shall use results of Müller [Mül86] to prove a stronger statement than uniqueness

of s. Consider the group morphisms πk : Aut(P) → Autk(P) = Aut(P/mk+2) and the

Lie algebra morphisms πk : ∆(P) → ∆k(P) = ∆(P)/(mk+1·∆(P)). Note that Autk(P)

is an algebraic group with Lie algebra ∆(P). Like in [Mül86, §2], one can use Artin

approximation theorem [Art68, Thm. 1.2] to prove the first part of the following

Lemma 1 πk(Autf ) is an algebraic group with Lie algebra πk(Derf ).

Proof By exactness of completion Der
f̂

= dDerf where f̂ denotes f considered in Ô.

Thus πk(Derf ) = πk(Der
f̂
) and we may assume that P = Ô. Consider the Lie algebra

morphisms πm
k : ∆m(P) → ∆k(P) and denote by fk the image of f in O/mk+1. For

fixed k, the πm
k (Derfm

) form a decreasing sequence of sub vector spaces in ∆k(P)

which implies πm
k (Derfm

) = Dk for large m. Then πm+1
m : Dm+1 → Dm is surjective

and hence Dk = πk(Derf ). In the proof of the first statement, we find πm
k (Autfm

) =

πk(Autf ) for large m and Derfm
is the Lie algebra of Autfm

.

Theorem 2 (uniqueness of maximal multihomogeneity) The algebraic torus Ts

in Theorem 1 is maximal in Autf and also π0(T
s) ⊆ π0(Autf ) is a maximal algebraic

torus. All maximal algebraic tori in Autf and π0(Autf ) are conjugate.

Proof First let Tt ⊆ π0(Autf ) be an algebraic torus with Lie algebra tt. If π0(T
s) ⊆ Tt

then the Lie algebra of Tt consists of σ-homogeneous semisimple elements of multide-

gree 0 and hence π0(t
s) = tt by Theorem 1.6. By Lemma 1 and [Mil06, Prp. 13.11],

this implies π0(T
s) = Tt and hence π0(T

s) is maximal.

Now let Tt ⊆ Autf be an algebraic torus in the sense of [Mül86, 1. Def. ii)] with Lie

algebra tt. By definition, πk(Tt) ⊆ πk(Autf ) ⊆ Autk(P) defines a rational represen-

tation of Tt which is diagonalizable by [Mil06, Thm. 9.13]. Then Cartan’s uniqueness

theorem holds for Tt by [Kau67, Satz] and π0 restricted to Tt is injective. This shows

that maximality of π0(T
s) implies maximality of Ts.

By [Hum75, VIII.21.3. Cor. A], all maximal tori of π0(Autf ) are conjugate. An

embedded version3 of [Mül86, Satz 2] shows that a conjugacy in π0(Autf ) of algebraic

tori in Autf lifts to a conjugacy in Autf .

3 In the first paragraph of [Mül86, §5], the proof of [Mül86, Satz 2] is reduced to the case of
embedded automorphism groups using [Mül86, Satz 6].
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Corollary 1 (lifting of maximal tori) π0 : Autf → π0(Autf ) defines a bijection of

algebraic tori.
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