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Abstract. In this paper, we recover the characteristic polynomial of an arrange-
ment of hyperplanes by computing the rational equivalence class of the variety de-
fined by the logarithmic ideal of the arrangement. The logarithmic ideal was in-
troduced in [CDFV] in a study of the critical points of the master function. The
above result is used to understand the asymptotic behaviour the Hilbert series of
the logarithmic ideal. As an application, we note that a well-known formula due to
Solomon and Terao may be expressed as an Euler characteristic and, at least in the
case of tame arrangements, deduced from our main theorem.
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1. Introduction

The characteristic polynomial is a ubiquitous combinatorial invariant of construc-
tions associated with hyperplane arrangements. For example, its coefficients are Whit-
ney numbers of a lattice, as well as Betti numbers of the complement of a complex
arrangement [OS80]. Over a finite field, the polynomial counts rational points in an

Date: March 22, 2012.
2000 Mathematics Subject Classification. Primary 52C35, Secondary 16W25, 05B35 .
Key words and phrases. hyperplane arrangement, logarithmic form, Chow ring, Tutte polynomial.
GD was partially supported by a grant from NSERC of Canada.

1



2 GRAHAM DENHAM, MEHDI GARROUSIAN, AND MATHIAS SCHULZE

arrangement complement: see, e.g. [Ath96]. For real arrangements, the coefficients
are average projection volumes: see [KS11]. For certain complex arrangements (lo-
cally free), the coefficients are Chern numbers of the sheaf of logarithmic 1-forms:
[MS01]. For any arrangement, its Chern-Schwartz-MacPherson class is given by its
characteristic polynomial: [Alu11]. The main result of this paper adds yet another
example to the (incomplete) list above of formulas for the characteristic polynomial of
a hyperplane arrangement, this time via the rational equivalence class of a biprojective
variety associated with the following problem.

Fix a central rank-` arrangement A of n hyperplanes in a m-dimensional complex
vector space V defined by n linear functions f1, . . . , fn ∈ V ∗ and let f = f1 · · · fn.
Denote the hyperplanes by Hi = ker(fi) for 1 ≤ i ≤ n. Given a vector of weights
λ = (λ1, . . . , λn) ∈ Cn, we consider the master function

(1.1) Φλ =
n∏
i=1

fλii .

This multi-valued function has zeros and poles on the variety
⋃n
i=1Hi defined by A;

accordingly let M = V \
⋃n
i=1Hi.

We denote the set of critical points of Φλ on M by

Σλ = {x ∈M | dΦλ(x) = 0} .
For suitable arrangements A and choices of weight λ, the the critical points of the mas-
ter function index a basis of solutions to a physically significant PDE: see, for example,
[RV95, SV03, Var03]. The core of the theory depends on properties of hyperplane ar-
rangements, as Varchenko shows in [Var11]. This has been the primary motivation for
a study of the critical points of master functions in [Var95, OT95, Sil96, CDFV]. The
question of finding extremal values of (1.1) in the case of real defining equations {fi} is
closely related, and complementary results have been obtained in [CHKS06, HKS05],
motivated by applications in algebraic statistics.

Let

(1.2) ωa =
n∑
i=1

ai
dfi
fi
,

where a1, . . . , an are coordinate functions on Cn as the space of weights. Let ωλ denote
the specialization of ωa with ai = λi for 1 ≤ i ≤ n: then ωλ is the logarithmic derivative
of Φλ, and we see Σλ = {x ∈M | ωλ(x) = 0}. In order to consider critical sets of (1.1)
for a fixed arrangement and all λ ∈ Cn, let Σ(A) be the subvariety of M × Cn given
by the vanishing of ωa, and let Σ(A) be its closure in V × Cn. The diagonal actions
of C∗ on V and Cn preserve Σ(A), so we let

X(A) = Σ(A)/(C∗ × C∗),
a subvariety of PV × Pn−1. These varieties were introduced in [CDFV] and studied
further in [DS]: in particular, X(A) is irreducible, has codimension ` = rankA, and is
smooth over PM × Pn−1.

The variety X(A) can be described using the moduleD(A) of logarithmic derivations
along A: by [CDFV, Thm. 2.9], it is the (biprojective) zero-locus of the ideal I(A) =
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〈D(A), ωa〉 obtained by contraction of ωa along logarithmic vector fields. (Details
appear in §2.4). An arrangement A is said to be free if D(A) is a free module. By
[CDFV, Thm. 2.13], the ideal I(A) is a complete intersection if and only A is free.
Moreover, in this case, I(A) is generated in bidegrees {(di, 1) | 1 ≤ i ≤ `}, where the
numbers {di + 1}, indexed in nondecreasing order, are called the exponents of A. (We
assume for the moment that m = `.)

Now consider the Chow ring

A• = A•(PV × Pn−1) ∼= Z[h, k]/(h`, kn)

where h = [H] and k = [K] denote the classes of hyperplanes H, K in PV and Pn−1
respectively (see, e.g., [Ful98, Ex. 8.4.2]). If A is free, from the above-mentioned
degrees of the generators of I(A), we compute

(1.3) [X(A)] =
∏̀
i=1

(
dih+ k

)
∈ A•.

There is an analogous result for the characteristic polynomial χ(A, t) of A. Terao’s
Factorization Theorem [Ter81] states that, if A is free, then the characteristic polyno-
mial factors as

(1.4) χ(A, t) =
∏̀
i=1

(t− di − 1) ∈ Z[t].

By comparison of (1.3) and (1.4), we deduce that

[X(A)] = χ+(−h, k − h),

where χ+(A, s, t) = s`χ(A, t/s) denotes the homogenized characteristic polynomial.
Our main result is that this formula holds in general.

Theorem 1.1. For any central arrangement A, we have

[X(A)] = χ+(A,−h, k − h) ∈ A•

That is, the cycle of the variety X(A) determines the characteristic polynomial of A.

On the other hand, we note that the variety X(A) itself is not a purely combinatorial
object: there exist arrangements A1, A2 with the same characteristic polynomial
(indeed, the same underlying matroid) for which the varieties X(Ai) are not isomorphic
as subvarieties of P2 × P8 (Example 5.7).

As an application, we use the Hirzebruch-Riemann-Roch formula to describe the
asymptotic behaviour of the Hilbert series of the defining ideal I(A) of the variety
X(A): see Theorem 5.4. In this way, the highest-degree terms of the Hilbert polynomial
and Hilbert series of I(A) are seen to be reparameterizations of the characteristic
polynomial, while the lower-degree terms are not combinatorially determined: again,
the arrangements of Example 5.7 have h(Ω1(A1), t) 6= h(Ω1(A2), t).

In [ST87], Solomon and Terao express the characteristic polynomial formula for
a central hyperplane arrangement A in terms of a specialization of an alternating
sum of Hilbert series of the modules of logarithmic forms, Ω•(A). This is necessarily
somewhat delicate, in view of the remarks above. However, if A is a free arrangement,
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the modules of logarithmic derivations form a free resolution of I(A). More generally,
if A is a tame arrangement, one has an exact complex of logarithmic forms (5.7),
by [CDFV, Thm. 3.5]. In this case, an Euler characteristic argument, together with
the results above, gives a geometric proof of Solomon and Terao’s famous formula,
Theorem 2.2.

2. Background and notation

Let A be a central arrangement in a complex vector space V and set

m = dimV, n = |A|.

For each H ∈ A, we choose fH ∈ V ∗ with H = ker fH . We further pick an ordering
A = {H1, . . . ,Hn} and set fi = fHi .

We refer to the book of Orlik and Terao [OT92] for the notation and terminology
of hyperplane arrangements not given here. We will use Fulton’s book [Ful98] as our
reference for notation and basic facts about intersection theory.

2.1. Combinatorics. Let L(A) denote the intersection lattice of A, ordered by re-
verse inclusion. The rank of X ∈ A is, by definition, the codimension of X in V , for
which we write rank(X). By definition, the rank

` = rankA

of A is rank(W ), where W =
⋂
H∈AH is the maximal element of L(A). If W = {0},

the arrangement is called essential (in which case ` = m.) Then the characteristic
polynomial of A is defined to be

(2.1) χA(t) :=
∑

X∈L(A)

µ(V,X)t`−rankX ,

where µ denotes the Möbius function of L(A). (Note that our definition of χA(t) is
the conventional one for matroids; however, this differs for non-essential arrangements
from the definition of [OT92, Def. 2.52].)

For each H ∈ A, the deletion and restriction at H are hyperplane arrangements in
V and H, respectively, defined by A′ := A \ {H} and A′′ := {H ∩H ′ | H ′ ∈ A′}. H
is called a bridge (or separator) if rank(A′) < rank(A). This means that H is not in
the span of the hyperplanes of A′, so H is a bridge if and only if A′ is not essential.

For each H ∈ A, the characteristic polynomial satisfies the “deletion-restriction”
recurrence relation:

(2.2) χ(A, t) = χ(A′, t)− χ(A′′, t);

if H is a bridge, this simplifies to χ(A, t) = (t− 1)χ(A′, t).
A hyperplane arrangement is a matroid representation, and so it has a Tutte poly-

nomial, which we denote by TA(x, y). The characteristic polynomial is the univariate
specialization

(2.3) TA(x, 0) = (−1)`χ(A, 1− x).
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Denote by tij the coefficient of xiyj in TA(x, y). Recall that tij ≥ 0 and t00 = 0 (see,
e.g., [BO92, Thm. 6.2.13]), as well as

(2.4) χ+(A,−s, t− s) =
∑̀
i=1

ti0s
`−iti.

2.2. Logarithmic forms and derivations. Let R = C[V ], the coordinate ring of V .
The module of logarithmic p-derivations of A is defined by

Dp(A) =

{
θ ∈

p∧
DerC(R) | ∀g2, . . . , gm ∈ R : θ(f, g2, . . . , gm) ∈ (f)

}
.

where DerC(R) is the module of C-linear p-derivations over the ring R which consist
of p-linear skew-symmetric maps θ : Rp → R which satisfy the Leibniz rule in every
factor. For 0 ≤ p ≤ m, the module of logarithmic p-forms is, by definition,

Ωp(A) =
{
ω ∈ Ωp

R/C,f | fω ∈ Ωp
R/C, fdω ∈ Ωp+1

R/C

}
,

where Ωp
R/C is the module C-linear Kähler differential p-forms.

The logarithmic p-forms and p-derivations are mutually dual, reflexive modules.
(For p = 1, the result is due to Saito [Sai80]; a proof in general can be found in [MS01,
Prop. 2.2].) From [DS, Prop. 2.2], for any p, we have Ωp(A) =

(∧p Ω1(A))∨∨, where
−∨ = HomR(−, R). We note also that the action of DerC(R) on R makes D(A) a
graded R-module, which induces gradings of Dp(A) and Ωp(A) for all p. In particular,
the Euler derivation has degree 0.

If A is a free arrangement, all the modules of forms and derivations are graded, free
modules; more generally, the following weaker notion is first defined in [TY95]:

Definition 2.1. We say that an arrangement A is tame if the projective dimension
of each module of logarithmic forms is bounded by the cohomological degree: that is,
pdimR Ωp(A) ≤ p for all 0 ≤ p ≤ m.

Solomon and Terao [ST87] established a remarkable formula for the characteristic
polynomial of an arrangement, expressed in terms of the Hilbert series of the modules
of logarithmic derivations. Let h(−, t) denote Hilbert series (in the R-variables).

Since our grading convention differs from that of Solomon and Terao by a shift of
degree p, their formula becomes:

Theorem 2.2 ([ST87]). The formal power series

ΨA(s, t) =

m∑
p=0

h(Dp(A), t)tp(s(1− t)− 1)p

is, in fact, a Laurent polynomial in Z[s, t, t−1], and its specialization ΨA(s, 1) =
(−1)mχ(A,−s).

For convenience, we define

(2.5) PA(x, y) =
m∑
p=0

h(Dp(A), x)yp.
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so that then PA(t, st(1− t)− t) = ΨA(s, t).

2.3. Reducibility. Recall that A in V is called reducible if there is a non-trivial
decomposition V = V1 ⊕ V2 and A = A1 ∪ A2 for arrangements A1 and A2 in V1
and V2 respectively. In this case, we write A = A1 ⊕ A2. Otherwise, A is said to be
irreducible. Note that A has a bridge if and only if A is reducible and A = A1 ⊕A2

in such a way that |A1| = 1.
A decomposition A = A1 ⊕A2 induces a decomposition

(2.6) D(A) = (D(A1)⊗C R2)⊕ (R1 ⊗C D(A2)),

where Ri = C[Vi]. In particular, if H = kerx1 is a bridge and A′ is the deletion, then

(2.7) D(A) = Rx1∂x1 ⊕D(A′).

2.4. Critical sets. The variety of critical points of A is, by definition,

Σ(A) :=
{

(x, λ) ∈M × CA | ωλ(x) = 0
}
.

Let C = C(A) = C[CA] = C[aH | H ∈ A], write ai = aHi , and set S = R ⊗C
C. Following [CDFV], we call the following ideal of S the logarithmic ideal of the
arrangement A:

I(A) := (〈θ, ωa〉 | θ ∈ D(A)⊗R S),

where 〈·, ·〉 denotes the contraction of a 1-form along a logarithmic vector field. It
plays the following role:

Theorem 2.3 ([CDFV, Thm. 2.9]). For any central arrangement A, we have Σ(A) =
V (I(A)).

Since A is central, I(A) is bihomogeneous in the variables of R and C respectively.
By [CDFV, Cor. 3.8], I(A) is radical if the arrangement A is tame. The variety Σ(A)
is irreducible and, in general, singular.

Example 2.4. For the arrangement A defined by xy(x − y) in C2, we may take
θ1 = x∂x + y∂y and θ2 = x2∂x + y2∂y as a basis for the module of derivations. Then

I(A) = (a1 + a2 + a3, x(a1 + a3) + y(a2 + a3)).

Example 2.5. If A is the Boolean arrangement, then I(A) = (a1, . . . , an). Note that
this is the irrelevant ideal of C, so in this case X(A) is empty.

3. A deletion-restriction formula

In this section, we will assume that A is an essential arrangement, so ` = m. We fix
a hyperplane H ∈ A relative to which we define the deletion A′, the restriction A′′,
and the multirestriction AH .

In order to compare the varieties Σ for arrangements A, A′, and A′′, we shall
introduce a diagram

(3.1) H × CA′′ H × CA′
σoooo � � ρ

// V × CA′ �
� ι // V × CA,

where ρ and ι are closed immersions, and σ is a linear projection.
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First, let ρ : H ↪→ V be the natural inclusion. Then define the linear projection

σ : CAH
� CA′′ as the C-linear extension of the canonical surjection σ : AH � A′′

on coordinates. Similarly, define the linear inclusion ι : CA′ ↪→ CA as the C-linear
extension of the canonical inclusion ι : A′ ↪→ A on coordinates. The corresponding
maps of coordinate rings σ∗ : C(A′′) ↪→ C(AH) and ι∗ : C(A) � C(A′) are given by

σ∗(aH′′) =
∑

σ(H′)=H′′

aH′ , ι∗(aH′) = aι(H′),

respectively. Finally, abusing notation, write ρ for ρ× id, σ for id×σ, and ι for id×ι.
This completes the definition of the diagram (3.1).

Theorem 3.1. For any arrangement A, if H is a bridge, then

(3.2) Σ(A) = Σ(A) ∩ V (aH) = ι(Σ(A′)) ⊃ ιρσ−1(Σ(A′′));

otherwise,

(3.3) Σ(A) ∩ V (aH) = ι(Σ(A′)) ∪ ιρσ−1(Σ(A′′)),

and this is generically a transversal intersection of smooth varieties.

In terms of the the diagram of rings

R/(fH)⊗ C(A′′) σ∗ // R/(fH)⊗ C/(aH) R⊗ C/(aH)
ρ∗

oo R⊗ C = S
ι∗oo

associated with (3.1), the varieties in Theorem 3.1 are given explicitly by

(3.4) ι(Σ(A′)) = V ((ι∗)−1(I(A′))), ιρσ−1(Σ(A′′)) = V ((ι∗ ◦ ρ∗)−1(〈D(A′′), ωHa 〉)

where ωHa = ρ∗ωa′ .
We first settle two special cases of Theorem 3.1.

Lemma 3.2. If H is a bridge, then (3.2) holds.

Proof. By (3.4), it suffices to verify that

I(A) + (aH) = (ι∗)−1(I(A′)) ⊂ (ι∗ ◦ ρ∗)−1(〈D(A′′), ωHa 〉).

This follows immediately from (2.7). �

Lemma 3.3. We have

Σ(A) ∩ V (aH) ∩D(fH) = ιΣ(A′) ∩D(fH).

Moreover, Σ(A) and V (aH) have a generically smooth and transversal intersection if
H is not a bridge.



8 GRAHAM DENHAM, MEHDI GARROUSIAN, AND MATHIAS SCHULZE

Proof. We compute

(I(A) + (aH))fH = (aH , 〈θ, ωa〉 | θ ∈ D(A))fH

= (aH , 〈θ, ωa〉 | θ ∈ D(A)fH )

= (aH , 〈θ, ωa′〉 | θ ∈ D(A)fH )

= (aH , 〈θ, ωa′〉 | θ ∈ D(A′)fH )

= (aH , 〈θ, ωa′〉 | θ ∈ D(A′))fH
= (ι∗)−1(I(A′))fH .

Using (3.4) this proves the first claim.
The last claim follows from [CDFV, Prop. 2.5], which states that the projection

M × CA → M turns Σ(A) into a vector bundle over M of rank |A| − `. Since H is
not a bridge, rank(A′) = ` as well. By the same result, Σ(A′) is then a vector bundle
over M of rank equal to |A′| − ` = n − 1 − `. Thus, by the first claim, V (aH) must
intersect each fibre of Σ(A) over M transversally. The second claim follows. �

Proof of Theorem 3.1. We shall assume that H = H1. For brevity, denote

W = Σ(A), W ′ = ιΣ(A′), W ′′ = ιρσ−1Σ(A′′), K = V (a1), Z = W ∩K.

For any subset X ⊂ V , we denote by a lower index X the intersection with X × Cn,
and by VX(−) the zero set in X ×Cn of a collection of equations. Using the inclusion
D(A) ⊂ D(A′) and restriction D(A)→ D(A′′) one readily verifies that Z ⊇W ′∪W ′′.
By Lemma 3.3, WV \H ∩KV \H = W ′V \H intersects as claimed.

Let X◦ = X \
⋃

(A\AX) for any flat X. To prove (3.3), then, it is enough to show
for each X that

(3.5) ZX◦ = WX◦ ∩KX◦ ⊆W ′X◦ ∪W ′′X◦ .

The previous paragraph shows this holds forX 6⊆ H, so we assumeX ⊆ H. By [CDFV,
Prop. 2.4], W , W ′, W ′′ are irreducible of dimensions n, n−1, n−1 respectively. So the
irreducible components of W∩K have dimension n−1 or n. Since W∩K is decomposed
into finitely many constructible sets WX◦∩KX◦ , it is then not necessary to prove (3.5)
in case dimWX◦ ∩KX◦ < n− 1, and in particular not in case dimWX◦ < n− 1.

Let d = dimX. We may assume that AX = {H1, . . . ,Hk} and, since A is essential,
that

(3.6) X ∩Hk+1 ∩ · · · ∩Hk+d = {0}.

In particular, any fj is a linear combination of f1, . . . , fk+d. Applying the local-
ization technique in [CDFV, p. 13], we may then replace ωa by ωa′ where a′ =
(a1, . . . , ak+d, 0, . . . , 0), by a suitable coordinate change. Note that coordinates ai,
i = 1, . . . , k, are indeed unchanged over X◦: They are changed only by a multiple of
fi which is zero on X. Using (3.6), we may then choose a coordinate system on V
such that x`−d+i = fk+i, i = 1, . . . , d, and fj = fj(x1, . . . , x`−d), j = 1, . . . , k. Set
T = V (x`−d+1, . . . , x`) such that p+T is transversal to X at p ∈ X◦. Then, locally at
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p, D(A) is generated by ∂`−d+1, . . . , ∂` and D(Ap+TX ), where Ap+TX = {H ′ ∩ (p + T ) |
H ′ ∈ AX}. Using [CDFV, Prop. 2.8], it follows that

(3.7) WX◦ = VX◦(a1 + · · ·+ ak, ak+1, . . . , ak+d)

if AX is irreducible.
In general, the sum could split into several such sums according to an irreducible

decomposition of AX . But this case is irrelevant because then dimWX◦ < n − 1.
Intersecting WX◦ with KX◦ means adding a1 to (3.7). Then the dimension drops to
n− 2 unless k = 1, so we can assume k = 1 which means X = H and hence d = `− 1.
But then WX◦ = W ′X◦ = W ′′X◦ = V (a1, . . . , a`) and (3.5) holds trivially.

To prove the statement on generic transversality, we are reduced to the case X = H
as before, but we have to find the equations of WV ◦H

where V ◦H = V \
⋃

(A \ {H}). To

this end, denote by a and a′ the coordinates before and after the coordinate change
from [CDFV, p. 13] applied above. With the above choice of coordinates and x1 = f1,

a′i = ai + xi
∑
j>`

cij
aj
fj
, i ≤ `, a′j = aj , j > `.

Since D(A) is generated by x1∂1, ∂2, . . . , ∂` on V ◦H , it follows that

WV ◦H
= VV ◦H

(
a1 + x1r,

a′2
x2
, . . . ,

a′`
x`

)
= VV ◦H (a1 + x1r, a

′
2, . . . , a

′
`)

where

r =
∑
j>`

c1,j
aj
fj

=
∑
j>`

c1,j
a′j
fj
.

If H is not a bridge, c1,j 6= 0 for some j and hence r 6= 0 on

VV ◦H (x1, a
′
1, . . . , a

′
`) = VH◦(a1, a

′
2, . . . , a

′
`) = ZH◦ .

Thus, generically along ZH◦ , WV ◦H
is smooth and intersects KV ◦H

= VV ◦H (a1) transver-
sally. �

4. An intersection ring formula

In this section, we prove Theorem 1.1 using a deletion-restriction argument based
on Theorem 3.1. We begin with two terms in the equality of Theorem 1.1 that need
to be verified separately.

Lemma 4.1. Then the coefficient of h` in [X(A)] is zero. Moreover, if A is not
Boolean, then the coefficient of k` equals 1.

Proof. First, X(A) is contained in PV ×PK, where K is the hyperplane in Cn given by∑n
i=1 ai = 0, by [CDFV, Prop. 2.6]. Therefore kn−1 · [X(A)] = [X(A)∩PV ×{λ}] = 0,

for any λ 6∈ PCA − PK, which gives the first claim.
Next, by [OT95, Prop. 4.1], Σ(A) is a vector bundle of rank n − ` over the com-

plement M ⊆ V . The torus C∗ × C∗ acts compatibly (see [CDFV, Prop. 2.5]). Since
A is not Boolean, we have n > `. For any x ∈ M , X(A) ∩ ({x} × Pn−1) is then
rationally equivalent to {x} × Pn−`−1. That is, h`−1 · [X(A)] = h`−1k`. The second
claim follows. �
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We continue to assume that A is essential. Both to justify this hypothesis and for
the following proof for essential A, we will need the pullback of cycles along a rational
map coming from a linear projection. Due to the lack of an obvious reference, we give
the construction.

Let π : V ′ � V ′′ be a linear projection of C-vector spaces, V another C-vector space,
and set d = dimV ′′. Let Y = PV × P(kerπ), and U = X \ Y .

Y
� � α // X = PV × PV ′ π //___ PV × PV ′′ = Z

U
?�

β

OO

πU

55kkkkkkkkkkkkkkkk

where π = id×π is a rational map with domain U .

Lemma 4.2. Using the notation above, let

(4.1) (π∗)−1 = (π∗U )−1 ◦ β∗.
Then the following sequence is exact:

(4.2) A•−d(Y )
α∗ // A•(X)

(π∗)−1

// A•(Z) // 0.

Restricted to codimension p < d, (π∗)−1 is an isomorphism with inverse

(4.3) (π∗)p = ((β∗)p)−1 ◦ (π∗U )p : Ap(Z)→ Ap(X).

These maps constitute an additive map that we shall denote by π∗.

Proof. Since πU is a vector bundle, the flat pullback π∗U is an isomorphism (see [Ful98,
Thm. 3.3]). Set Y = X \ U and note that codimY = d by hypothesis on π. Then the
flat pullback β∗ is surjective (by [Ful98, Prop. 1.8]) and

(β∗)p : Ap(X) � Ap(U)

is an isomorphism for p < codimY . The claim follows. �

Remark 4.3. Assume thatA is not essential. LetAe denote the essential arrangement
obtained as the image of A under the linear projection π : V � V/W , where we recall
W =

⋂
H∈AH. Applying Lemma 4.2 to the corresponding rational map

π = π × id : PV × PCA //___ P(V/W )× PCAe
,

we obtain (π∗)−1[X(A)] = [X(Ae)] where (π∗)−1 is defined by (4.1). Since [X(A)] ∈ A`
where ` = codimW , the map ((π∗)−1)` is not an isomorphism. However, by (4.2), its
kernel is generated by α∗[W ] = h`. But by Lemma 4.1, the coefficient of h` in [X(A)]
is zero, so it suffices to prove Theorem 1.1 for essential arrangements.

We begin with the base case of an induction argument.

Remark 4.4. Let A be the Boolean arrangement. Then both sides of the formula of
Theorem 1.1 are zero: X(A) is the empty variety, defined by the irrelevant ideal in the
second factor (Example 2.5). On the other hand, χ+(A,−h, k−h) equals k`, which is
zero in the Chow ring A•.
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For the induction step, we return to the setup of §3. By further abuse of notation,
we let σ, ρ, and ι denote the projectivization of the maps of (3.1):

(4.4) PH × PCA′′ PH × PCA′
σoo_ _ _ � � ρ

// PV × PCA′ �
� ι // PV × PCA.

Since [X(A′′)] ∈ A`−1(PH × PCA′′), σ∗[X(A′′)] is defined by (4.3) and, by definition,

(4.5) σ∗[X(A′′)] = [σ−1X(A′′)].
The geometric formula of Theorem 3.1 now leads to the following in A•:

Proposition 4.5. If H is a bridge, then

(4.6) [X(A)] = k · [X(A′)];
otherwise,

(4.7) k · [X(A)] = k · [X(A′)] +

{
hk` if A′′ is Boolean,

hk · σ∗[X(A′′)] otherwise.

Proof. If H is a bridge, then [X(A)] = [iX(A′)] by (3.2). Since ι is a linear inclusion,
it is proper and has degree 1, so [ιX(A)] = ι∗[X(A′)]. By the projection formula,

ι∗(x · ι∗(k)) = k · ι∗(x) for x ∈ A•(PCA′) and, since k = [K] and K = ι(PCA′),
ι∗(h) = 1 by definition. This proves (4.6).

If H is not a bridge, by (3.3), we have

k · [X(A)] = [ιX(A′)] + [ιρσ−1X(A′′)],
using [Ful98, Rem. 8.2]. If A′′ is Boolean, then ιρσ−1(Σ(A′′)) is a product of H with a
codimension-` linear subspace of CA (Remark 4.4). Otherwise, σ−1X(A′′) is nonempty,
and the proof of (4.7) uses (4.5) and the same arguments as in the bridge case. �

We are ready to prove our main result.

Proof of Theorem 1.1. We argue by induction on n = |A|, the base case being trivial
by Remark 4.4. For indeterminates s and t, the recurrence (2.2) becomes

(4.8) χ+(A,−s, t− s) =

{
tχ+(A′,−s, t− s) if H is a bridge,

χ+(A′,−s, t− s) + sχ+(A′′,−s, t− s) otherwise.

If H is a bridge, then [X(A)] = k · χ+(A′,−h, k − h), by induction together with
Proposition 4.5 and Remark 4.3.

If H is not a bridge,

k · [X(A)] = k · χ+(A′,−h, k − h) + hk · χ+(A′′,−h, k − h),

by induction and Proposition 4.5. Both sides of the expression have degree `+ 1. We
may assume A is not Boolean (Remark 4.4), in which case n ≥ `+ 1. If n > `+ 1, we
can conclude that

[X(A)] = χ+(A′,−h, k − h) + h · χ+(A′′,−h, k − h).

If n = `+ 1, then k`+1 = 0 in A•. In this case, the coefficient of k` on the left is 1 by
Lemma 4.1, and the same on the right since TA(x, 0) is monic, using (2.4). �
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Remark 4.6. Let L denote a line in PCA. Then by Theorem 1.1,

[X(A)] · [L] = χ+(−h, k − h)kn−2

= t10h
`−1kn−1.

The coefficient t10 equals β(A) = |χ(PM)|, the well-known beta invariant of A (see,
e.g., [BO92, Prop. 6.2.12].)

This is to say, by Bezout’s Theorem, that for generic choices of λ ∈ Cn for which∑n
i=1 λi = 0, the critical set of the master function Φλ in V equals β(A) points. The

main result of [OT95] is a refined version of this statement: they show, addition-
ally, that the critical points are isolated and nondegenerate. This calculation is also
closely related to [CHKS06, Thm. 5(3)], where the authors count critical points (with
multiplicities) for global normal crossings divisors.

5. Application to Hilbert series

5.1. Chern classes. Recall that one may define Chern classes for any coherent sheaf
F on a nonsingular variety Y : in this case, F has a finite resolution by vector bundles,
and the Chern classes of F are defined formally using the resolution via the Whitney
sum formula. If the support of F has codimension `, then cp(F) = 0 for 0 ≤ p < `,
by [Ful98, Ex. 15.3.6]. If Z is a codimension-` subvariety of Y , we have moreover that
c`(OZ) = (−1)`−1(`− 1)![Z] in A(Y ), by [Ful98, Ex. 15.3.6].

Applying this to our situation gives the following, using Theorem 1.1.

Proposition 5.1. For any arrangement A, we have cp(OX(A)) = 0 for 0 ≤ p < ` and

c`(OX(A)) = −(`− 1)!χ+(A, h, h− k).

In terms of the exponential Chern character, by [Ful98, Ex. 15.1.2(c), Ex. 15.2.16(a)],

(5.1) ch(OX(A)) = χ+(A,−h, k − h) +O({h, k}`),

where O({h, k}`) denotes a polynomial in A• ⊗Z Q whose monomials are all of total
degree strictly greater than `.

5.2. The Hilbert polynomial. For a bigraded S-module M , let pM (p, q) denote its
Hilbert polynomial: i.e., pM (a, b) = dimCMa,b for integers a, b � 0. We refer to the
classic paper of van der Waerden [Wae28] for properties of Hilbert series and Hilbert
polynomials of bigraded modules. In particular, the (total) degree of pM (a, b) equals
dimSM − 2.

In this section, fix an arrangement A and set I = I(A) and X = X(A). It turns
out that the asymptotic behaviour of the Hilbert polynomial of S/I is combinatorially
determined.

Proposition 5.2. If A is a rank-` arrangement of n ≥ 2 hyperplanes, then

(5.2) pS/I(p, q) =
1

(n− 2)!

∑̀
i=1

ti0

(
n− 2

i− 1

)
pi−1qn−1−i + Ω({p, q}n−2),
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where Ω({p, q}n−2) denotes a polynomial in p and q of total degree strictly less than
n− 2.

Proof. By the Hirzebruch-Riemann-Roch formula (see also [Har77, Exc. III.5.2]),

pS/I(a, b) =

∫
ch(OX(a, b)) td(TPV×Pn−1),

for all nonnegative integers a, b. Then

(5.3) pS/I(p, q) = [h`−1kn−1] ch(OX)eph+qk td(TPV×Pn−1),

where [hikj ](−) denotes the coefficient of hikj in an element of the ring A•[p, q]. This
is a polynomial of degree dimX = n− 2 in p and q; in this proof, we will refer to the
gradings in A• and variables p, q as the hk-degree and pq-degrees, respectively.

Consider the product expansion of (5.3). Terms in the middle factor have matching
pq- and hk-degrees. In order to obtain a term in the product of hk-degree n + ` − 2
and pq-degree n − 2, then, only the least nonzero terms of ch(OX) and td(TPV×Pn−1)
may appear, by (5.1). As the Todd polynomial has constant term 1 and using (2.4),
the highest degree term of pS/I(p, q) can be written

[h`−1kn−1]χ+(A,−h, k − h)eph+qk =
∑̀
i=1

ti0[h
`−1−(`−i)kn−1−i]

(ph+ qk)n−2

(n− 2)!

=
1

(n− 2)!

∑̀
i=1

ti0

(
n− 2

i− 1

)
pi−1qn−1−i,

and the claim follows. �

Remark 5.3. If A is a Boolean arrangement of rank `, then S/I ∼= R. So pS/I(p, q) =

0, and the Hilbert series is h(S/I; t, u) = (1− t)−`.

5.3. The Hilbert series. In this section, we assume that A is not Boolean, to avoid
the degenerate special case. The result from the previous section may also be expressed
in terms of the Hilbert series. From [Wae28, Thm. 7], the Hilbert series of S/I can be
written as

h(S/I; t, u) =
∑̀
i=0

gi(t, u)

(1− t)i(1− u)n−i

for some polynomials gi(t, u), 0 ≤ i ≤ `. By means of a partial fractions expansion,
the series h(S/I; t, u) may also be written as

(5.4) h(S/I; t, u) =
∑
i,j≥0
i+j≤n

cij
(1− t)i(1− u)j

where the coefficients {cij} are integers for i, j ≥ 1, c0j ∈ Z[t] for j ≥ 1, ci0 ∈ Z[u] for
i ≥ 1, and c00 ∈ Z[t, u].

The terms in this expansion of highest pole order are combinatorially determined:



14 GRAHAM DENHAM, MEHDI GARROUSIAN, AND MATHIAS SCHULZE

Theorem 5.4. For any arrangement A of n hyperplanes,

(5.5) h(S/I; t, u) =
∑̀
i=1

ti0
(1− t)i(1− u)n−i

+ Ω({(1− t)−1, (1− u)−1}n).

Proof. Via the binomial expansion, (5.4) becomes

(5.6) h(S/I; t, u) =
∑

i,j,p,q≥0
i+j≤n

cij

(
p+ i− 1

p

)(
q + j − 1

q

)
tpuq.

For any k, the highest degree term of
(
p+k
p

)
(as a polynomial in p) equals 1/k!pk. Then,

for each i, 1 ≤ i ≤ n− 1, the coefficient of pq-degree (i− 1, n− i− 1) in (5.6) equals

ci,n−i/((i − 1)!(n − i − 1)!). However, this coefficient also equals ti0
(
n−2
i−1
)
/(n − 2)!,

by (5.2), so ci−1,n−i−1 = ti0. The argument is completed by noting that t00 = 0 and
ti0 = 0 for i > `. �

Corollary 5.5. The formal power series

(1− t+ st(1− t))nh(S/I; t, t− st(1− t))
is a polynomial in s and t. Its evaluation at t = 1 is (−1)`χ(A,−s).

Proof. By Theorem 5.4,

(1− u)nh(S/I; t, u) = TA(
1− u
1− t

, 0) + (1− u)nQ(t, u),

where Q(t, u) is some formal power series with (total) pole order strictly less than n.
Now apply the change of variables t 7→ t, u 7→ t−st(1−t). Since 1−u 7→ (1−t)(1+st),

we see (1− t)n−1Q(t, t−st(1− t)) is, in fact, a polynomial. Then the first claim follows
by writing out the substitution:

(1 + t− st(1− t))nh(S/I, t, t− st(1− t)) =

TA(1 + st, 0) + (1− t)n(1 + st)nQ(t, t− st(1− t)).
Since the second summand is a polynomial divisible by 1− t, the second claim follows
by setting t = 1 and using (2.3). �

Example 5.6. Let A be arrangement of Example 2.4. Here, χ(t) = (t − 1)(t − 2)
and TA(x, y) = x2 + x + y: by Theorem 1.1 we find [X(A)] = kh + k2. By direct
computation, we have

pS/I(p, q) = p+ q + 1,

h(S/I, t, u) =
1

(1− t)(1− u)2
+

1

(1− t)2(1− u)
− 1

(1− t)(1− u)
,

where the leading parts are predicted by Proposition 5.2 and Corollary 5.5.

Example 5.7. In [Zie89, Ex. 8.7], Ziegler found a pair of rank-3 arrangements A1 and
A2 with isomorphic intersection lattices, for which Ω1(Ai) have different Hilbert series,
for i = 1, 2. Viewed in P2, these are arrangements of 9 lines with six triple points.
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We will use the realizations of Yuzvinsky [Yuz93, Ex. 2.2]. Schenck and Tohǎneanu
considered the same example as [ST09, Ex. 1.4], and they observed that the triple
points of the one arrangement lie on a conic, while those of the other do not. The
Tutte polynomial of either specializes to

TAi(x, 0) = x3 + 6x2 + 15x.

Computation with [GS] shows that the respective Hilbert series of S/I(Ai) are:

h1 =
1− 6t5u+ 4t6u+ t6u2

(1− t)3(1− u)8
and

h2 =
1− t4u− 3t5u+ t6u+ t6u2 + t7u

(1− t)3(1− u)8
.

Then

hi =
15

(1− t)(1− u)8
+

6

(1− t)2(1− u)7
+

1

(1− t)3(1− u)6
+ Ωi

for i = 1, 2; however, the tails differ: h1 − h2 = Ω1 − Ω2 = t4u/(1− u)8.
Since these arrangements are tame, the defining ideals are radical by [CDFV,

Cor. 3.8]. Since their respective Hilbert series differ, X(A1) 6∼= X(A2) as subvarieties
of P2 × P8.

5.4. Solomon and Terao’s formula. If A is a tame arrangement, we can obtain
another formula for ch(OX(A)) and compare with the identity (5.1). To begin, recall
the following (using [·, ·] to denote a shift of bidegrees):

Theorem 5.8 ([CDFV, Thm 3.5]). For any tame arrangement A, the complex

0 // Ω0
S/C(A)[0,−`] ωa // Ω1

S/C(A)[0, 1− `] ωa // · · ·

· · · ωa // Ω`−1
S/C [0,−1]

ωa // Ω`
S/C [0, 0] // (S/I)[n− `, 0] // 0(5.7)

is an exact complex of bigraded S-modules.

We may replace (5.7) by the following, using the identity Dp(A) ∼= Ω`−p[`− n]:

(5.8) 0 // D
S/C
` (A)[0,−`] // · · · // D

S/C
1 (A)[0,−1] // D

S/C
0 (A) // S/I // 0,

where the differential is contraction along ωa. Noting that D
S/C
p (A) = Dp(A) ⊗R C

for 0 ≤ p ≤ `, we obtain:

Corollary 5.9. If A is a tame arrangement, then the bigraded Hilbert series of S/I
is given by

h(S/I, t, u) = PA(t,−u)/(1− u)n,

where PA(t, u) is defined in (2.5).

Remark 5.10. If A is a tame arrangement, or any arrangement for which the complex
(5.7) is exact, then Solomon and Terao’s formula for A (Theorem 2.2) is a consequence
of Corollary 5.9 together with Corollary 5.5. It is not known if (5.7) is exact for all
arrangements.
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